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a b s t r a c t

The ability to create and sustain educational infrastructure is a major challenge to nations across the
world. Today, information technology is increasingly being used to alleviate this problem by bridging
the gap between learners and the textual materials by automating the process of teaching and learning.
Due to this, there has been a steep rise in the information need for pedagogical content in recent years.
Although there is increasing interest in building question-answering systems, there is a scarcity of
intelligent tutoring systems, particularly, in physics education that can aid both students and teachers
in secondary education. In this paper, we introduce a novel method for multi-label classification
of paragraphs, where the paragraphs are chosen from physics subject of 6th to 12th grades from
the curriculum of Central Board of Secondary Education (CBSE), India. This curriculum is common
across India. For this purpose, we have constructed an attention-based recurrent interleaved multi-
task learning (MTL) network, namely InPHYNet that can be used for any general purpose multi-label
classification task related to the educational domain. The proposed solution is contextual and scalable.
Although related to physics education, it is generalizable as an approach for other subjects. We perform
experiments (i) to verify and validate the labels of data collected, and (ii) to conduct robust analysis
of the proposed InPHYNet network. It is observed to yield significant accuracy on the dataset and can
be used for any education-based text classification/annotation or as a module within the educational
question-answering systems to enhance its quality.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Science, Technology, Engineering, and Mathematics (STEM)
obs are important in the growth of any nation. STEM workers
rive this growth by generating new technological ideas, products
nd companies. According to the report by the US Department
f Commerce [1], STEM areas experienced higher growth rates
f 0.8% per year compared to a growth rate of 0.3% per year
n non-STEM areas during the period 2005–2015. The report
mphasized that this higher growth trend in STEM areas would
ontinue in the next decade (2014–2024) with the projections of
early employment growth of 0.9% in STEM areas compared to
n yearly growth of 0.6% in non-STEM areas. Similarly, in 2015,
TEM professionals were observed to earn 29% more compared
o those working in non-STEM areas. It is widely known by now
hat preparedness of a country’s population in STEM areas will
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influence its success in knowledge-based global economy because
most of the future jobs will require basic mathematics and sci-
ence skills. However, many students leave science education early
in their careers [2,3]. This is partly due to difficulties in learning
STEM subjects and partly due to challenges in teaching STEM
related subjects [4]. There is definitely a need for new pedagogical
practices for teaching STEM subjects. Many education researchers
have proposed solutions to address these problems. Kelley and
Knowles [5] presented a conceptual framework towards inte-
grating STEM areas’ key concepts with real life applications for
generating interest in students. Moore et al. [6] discussed imple-
mentation and integration of engineering concepts in K-12 STEM
education, whereas Wladis et al. [7] discussed online learning and
factors affecting course retention in STEM.

Often, physics is viewed as one of the toughest subjects by stu-
dents. It has been observed that the traditional teaching methods
are not able to change this belief irrespective of the instructor
or the quality of instruction [8,9]. Thus, students resort to rote
memorization of concepts that eventually leads to lack of interest
in physics. Hake [10] noted that students receiving instruction

through traditional teaching mode can master, on an average,

https://doi.org/10.1016/j.knosys.2020.106487
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2020.106487&domain=pdf
mailto:anubha@iiitd.ac.in
mailto:tanmoy@iiitd.ac.in
https://doi.org/10.1016/j.knosys.2020.106487


V. Udandarao, A. Agarwal, A. Gupta et al. Knowledge-Based Systems 211 (2021) 106487

o
a
o
p
c
p
n
p
k
i
a
e
i

o
t
t
W
m
t
c
p
I

o
d
f
c
p
o
i
a
(
t
b
i
a
w
b
b
m
f
o
g

2

k
i
c

2

o
c
o
f
e
r
[
e
i

nly 30% or less new concepts taught in the class. This result is
lso stated to be largely independent of lecturer quality, class size,
r institution [10]. Cognitive research has shown that material
resented in a classroom lecture is more than a typical person
an process, leading to cognitive load and decreased information
rocessing [11]. Wieman and Perkins [12] discussed how this cog-
itive load can be minimized by having an organized structure of
resented ideas and by linking new material to the ideas already
nown to the audience. They also mentioned the importance of
ntroducing concepts of physics in terms of real-world situations
nd how educational technology can greatly improve physics
ducation by facilitating the incorporation of these principles into
nstruction.

In this paper, we present a study of using educational technol-
gy in a context where it augments the work of teachers rather
han replacing teachers. Our core concept is to help teachers as
hey assist students in class with problem-solving and learning.
e foresee a question-answering system, that is although auto-
ated, should partly be supported by experts available online on

he platform, if needed. We are designing such a system, specifi-
ally, for physics subject of 6th to 12th grades on the syllabus as
rescribed by the Central Board of Secondary Education (CBSE),
ndia.

In this study, we undertake the first step towards the devel-
pment of this system. Since there was no curated/annotated
ataset available for CBSE physics content in the ready-to-use
orm that can be utilized to build a question-answering physics
hatbot, we prepared an in-house annotated dataset for this
urpose. A detailed description on the collection and annotation
f the dataset, and the visualization and analysis of the dataset
s provided in Section 3. In the near future, we aim to build
n automated question-answering system for the educational
physics) domain, which would understand the correlation be-
ween various concepts and entities. For this, we first need to
uild a model that can classify text into the type of information
t contains. For instance, the paragraph ‘‘Force can change speed of
moving body: acceleration will increase speed of a running vehicle
hile applying brakes will decrease the speed of a running vehicle.’’
elongs to two classes – ‘‘Effects’’ and ‘‘Examples’’. Along with
uilding the physics dataset, we also propose an attention-based
ultitask recurrent network, called InPHYNet2 that can be used

or text classification. We also performed rigorous experiments
n the dataset by training InPHYNet on different permutations of
rade-wise data.

. Related work

We position our work in the literature by focusing on three
ey areas related to our work: (1) educational technologies for
nteractive learning systems, (2) multitask learning, and (3) text
lassification.

.1. Educational technologies for interactive learning systems

The field of education is one of the most fundamental spheres
f facilitating learning and acquiring knowledge. Research in the
onfluent space of technology and education has gathered a lot
f interest in recent years. Some of this work has focused on
ree-text or subjective question–answers of students, and their
valuation. Noorbehbahani and Kardan [13] provided an algo-
ithm for the assessment of free-text answers. Westera et al.
14] proposed techniques for the automated scoring of students’
ssays. Both of these helped reduce the workload of teachers
n terms of evaluation. Rodrigues and Oliveira [15] presented a

2 Code available on request.
2

system that is based on the free-text answers of students and
is capable of monitoring their progress as well as provides a
formative assessment of the students. Atapattu et al. [16] indi-
cated that course material, delivered as graphs and visuals, help
students better because they can relate to concepts easily. They
also provided an automated method for generating concept maps
based on lecture slides.

There has been an increasing focus on building end-to-end
QA based interactive dialog systems for facilitating better learn-
ing. Agarwal et al. [17] proposed a model framework for building
a QA system for any subject/course material. Afzal et al. [18]
discussed the prototype of a dialog-based intelligent tutoring
system, called the Watson Tutor. However, both these models are
limited in providing a smooth human-like conversational inter-
action. A lot of work has been pivoted on the Student Response
Analysis (SRA) part of a dialog system. SRA is used in systems
that evaluate student answers. Dhamecha et al. [19] noted the
problem of lack of an adequately labeled dataset for SRA and
addressed it via a cost-effective method of data collection. Mar-
vaniya et al. [20] handled the evaluation part of SRA and proposed
the designing of evaluation rubric using a model captured from a
focused set of responses.

We contribute towards building a QA system for physics
school education in the near future. We propose a novel deep
learning architecture, namely, InPHYNet that is capable of as-
signing a set of multiple labels to a given text. This architecture
can also be used for question-type annotation and can be posi-
tioned directly within a QA system pipeline that would lead to
improvements in the quality of the system. We also introduce an
annotated physics dataset for multi-label text classification that
can be used for several tasks, such as question-type annotation,
answer-type classification, and topic clustering.

2.2. Multitask learning

Multitask learning (MTL) is a machine learning technique in
which multiple learning tasks are solved simultaneously by ex-
ploiting similarities across tasks [21]. This proves extremely help-
ful in improving the efficiency and accuracy of the task-specific
models. Multitask learning typically consists of a primary task and
several auxiliary tasks that are trained simultaneously by using a
shared set of hidden layers in the MTL architecture. By utilizing
the entire data from both the primary and auxiliary tasks, features
learned for representing the common data attributes become
highly discriminative and reinforced. This helps in better training
of all the tasks together and hence, improves the accuracy of these
tasks. Furthermore, since all the tasks are trained simultaneously,
the training latency improves by a large factor in comparison to
training different tasks asynchronously. Hence, multi-task learn-
ing helps in enhancing the quality of results obtained at an
expedited rate.

The most common form of MTL entails the co-training of
related tasks [22]. These tasks share proximate input represen-
tations and subsequently use separate networks adapted to each
task. All the tasks are jointly co-trained together with a number
of shared hidden representation layers. MTL has been found to be
very useful in supervised text classification problems [23–25] as
well as in semi-supervised problems [26]. A number of such MTL
techniques are presented by Zhang and Yang [27].

Recently, with the advances in sequence to sequence mod-
els, attention [28] has become a very popular mechanism to
align sequences of data. MTL models have also greatly bene-
fited from using formulations of attention within their model
architectures. Lan et al. [29] presented an MTL attention-based
model to address implicit discourse relationship representations.
They made use of a sigmoid-gated sharing strategy for training
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heir multi-task framework for the tasks of learning knowledge
rom annotated and unannotated corpora. Liu et al. [30] lever-
ged both MTL and attention in the computer vision domain
y learning task-specific feature-level attention using a single
hared MTL network. This architecture allowed for the learning
f task-specific global features while simultaneously allowing
haring of visual features across a set of diverse tasks. Stickland
nd Murray [31] introduced ‘projected attention layers’ to be
sed along with the multi-task training to ensure high qual-
ty adaptation of the BERT [32] model’s sentence representation
uality. MTL and attention models have also been explored in the
peech domain. Zhang et al. [33] explored leveraging attention
echanisms embedded within MTL LSTM-based acoustic models

or distant speech recognition. Their experiments clearly demon-
trate that their model improves robustness for their primary
enone classification task and auxiliary feature enhancement task.
Gupta et al. [34] recently proposed a novel MTL network

rchitecture, called GIRNet, that learns to derive task-based com-
osite state sequences. GIRNet architecture makes use of the
undamental MTL assumption that the number of auxiliary tasks’
raining instances will always be much greater than the primary
ask’s training instances due to the scarcity of primary task data.
IRNet uses recurrent neural networks with Long Short Term
emory (LSTM) blocks as the base neural network architecture.

t consists of a primary LSTM network and auxiliary LSTM net-
orks. The auxiliary task’s training instances are passed through
he auxiliary LSTMs for training. However, each primary task’s
raining instance is passed through the primary LSTM network
s well as the auxiliary LSTMs for training. For each primary
ask’s training instance, the auxiliary LSTM network states are
ombined by performing a gating operation. These are passed-on
o the primary LSTM network. This creates a robust mechanism
or simultaneous training of the primary and auxiliary networks.

In this work, we propose an improvement on the GIRNet
odel by applying a weight alignment layer to the MTL network

hat is capable of judging the importance of each auxiliary task’s
STM network to the primary input data. This weight alignment
pproach helps in enhancing the representational capacity of the
rimary LSTM network’s state sequences by assigning a weight
o each auxiliary LSTM network in association with each primary
ask training instance. We call this improved network model as
nPHYNet because it is trained on physics subject and is used for
ulti-label physics text classification.

.3. Text classification

Text classification is one of the very fundamental exercises
n Natural Language Processing (NLP) which helps us classify
ata (structured/unstructured) into various categories based on
ts content. The problem of text classification has been popular
ince the late ’90s with advancements in results every year.
nitial methods approached this with Bayesian classification tech-
iques [35] and the unigram language model [36–38]. With
rowing popularity and importance, researchers started using ad-
anced machine learning techniques such as Support Vector Ma-
hine (SVM) [39]. SVM has also been applied in the field of social
edia text classification to improve information filtering [40].
With the increasing demand and enormous applications of

ext classification, deep learning methods such as Convolutional
eural Networks (CNN) [41], Recurrent CNN [42], long short term
emory (LSTM) [43] have been used to classify various kinds
f data. Likewise, there is a regional text classification approach
sing an attention mechanism [44] in addition to the deep learn-
ng model framework. Furthermore, recent developments in NLP
echniques have improved the ability to represent textual data in
ell-structured mathematical formulations [32,45–49].
3

Table 1
Description of nine labels identified for the CBSE Physics school curriculum.
Label type Description

Definition What is ... ?, Define ..?
Causes What causes ... ?, What leads to ... ?, How is...?
Examples Give some examples of ...?
Reasoning Explain the working of ...?, Give reasons why ...?
Property What are the attributes of ... ?
Types What are the different types of ?
Formula Write down the formula for ... ?, How is ... calculated?
Effects What are the effects of ... On ... ?, What happens when ...?
Relation How is ... related to ... ?, How is ... different from ...?

Multi-label text classification entails the assignment of one
or more labels to each input data (paragraph) [50]. These tasks
are often considered to be more challenging as compared to bi-
nary/ multi-class text classification problems because it requires
the assignment of labels to each input paragraph to be variable
(one or more). Recently, there has been a lot of work done
at the cross section of deep learning and multi-label classifica-
tion. Pereira et al. [51] conducted a comprehensive study on the
feature extraction techniques which are germane to multi-label
classification models. Ahmed et al. [52] conducted robust exper-
imentation with classic machine learning models and problem
transformation techniques to convert multi-label classification
into a single multi-class classification problem. Chang et al. [53]
proposed a deep learning framework that takes inspiration from
approaches used in information retrieval. It solves the problem by
using a three pronged approach involving label indexing, match-
ing, and ranking. Other methods include using a neural network
for the probabilistic scoring of labels [54,55] and a label predictor
to identify the best relevant and irrelevant labels [56].

Our approach differs from all the above approaches. We apply
an attention mechanism to an interleaved recurrent network that
suits our goals for multi-label text classification via multitask
learning framework.

3. Overview of datasets

We use two datasets in this paper to conduct our experiments
and analysis. The first dataset, ‘‘Multi-label Physics K-12 dataset’’,
is a novel dataset that has been created by us to help promulgate
the research in the area of educational question-answering. The
second dataset is publicly available, namely, ‘‘Experimental Data
for Question Classification’’ released by Li and Roth [57]. We
describe both these datasets below.

3.1. Multi-label physics K-12 dataset

3.1.1. Dataset creation
For creating the dataset, we focus on grade 6th to 12th physics

as taught in the federally supported CBSE curriculum in India.
Corresponding to each chapter of every grade, we collect chapter
notes from the free public websites that provide help to students
in CBSE curriculum. Each of these chapter notes is further com-
posed of paragraphs. In order to correctly capture the context
specified in each of these paragraphs, we identify nine label types.

These labels are required to satisfy the below two conditions:
• The identified labels should capture all possible contextual

information exhaustively. For example, if a paragraph con-
tains a definition followed by an example, then the labels
should capture both the definition and example information
aptly.

• They should be independent of each other. This implies
that each label should capture a unique contextual infor-

mation about the paragraph. Therefore, the labels should
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Table 2
Examples of paragraphs and their corresponding labels in the dataset.
Example paragraph Labels Possible questions

Force can make a stationary body in motion. For
example a football can be set to move by kicking it,
i.e. by applying a force.

Examples, Effects What are the effects of Force? Describe a property of
Force? Give an example of the effects of Force.

When the mirror is a part of a sphere, it is called
spherical mirror. Spherical mirrors are of two types.
In concave mirror, the reflective surface is inside the
sphere, i.e. is depressed. In convex mirror, the
reflective surface is outside the sphere, i.e. is bulged
or protruded.

Definition, Types What is a spherical mirror? What are types of
Spherical mirrors? Explain concave and convex
mirror.
T
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not be overlapping with each other in capturing informa-
tion context. For example, if a paragraph contains a defini-
tion followed by a formula and an example, we essentially
have three unique information entities in the paragraph -
definition, formula, and example.

We conducted extensive annotation to understand the pos-
ible label types that could encode the contextual information
resent in each paragraph, while satisfying the two conditions
tated above. Based on the annotation of CBSE physics chapters,
e could identify nine unique label types that are independent of
ach other (in capturing contextual information) and could also
xhaustively encapsulate all different types of information con-
exts present in paragraphs. These nine label types are described
n Table 1.

Each paragraph can, therefore, be annotated by either one or
ultiple labels that we term as the labelset for each paragraph.
he labelset for each paragraph is a subset of the above nine label
ypes. Some examples from the dataset are shown in Table 2. In
ig. 1, we visually present a few preliminary observations of the
ataset.

.1.2. Dataset statistics
Our dataset is multi-label in nature, i.e., every paragraph

training sample) in the dataset can have one or more labels. For
nstance, consider the following paragraph:

‘‘When an object repeats its motion after a fixed interval of
ime, it is said to be undergoing periodic motion, say, for example,
endulum.’’
We note that the above paragraph is associated with two

abels – Definition and Examples. We, therefore, scrutinize the
ataset and quantify the distribution of data points and labels by
alculating three major statistical measures. Let us define N to be
he total number of training samples (paragraphs) in the dataset,
to be the total number of labels that are possible for a training
ample and y(i)j to be the binary value of the jth label for the ith
training sample. We measure the following:

• Label Cardinality (LC): It is a measure of the average number
of labels per training sample.

LC =
1
N

N∑
i=1

L∑
j=1

y(i)j

• Label Density (LD): It is a measure of the average number
of labels per training sample divided by the total number of
labels.

LD =
1
NL

N∑
i=1

L∑
j=1

y(i)j

• Diversity (d): It is a measure of the average number of
labels per training sample multiplied by the total number
of training samples. In simpler terms, it is the total number
4

Table 3
Dataset statistics.
Statistic Value

Number of labels (L) 9
Number of training samples (N) 4199
Label cardinality (LC) 1.68706835
Label density (LD) 0.1874520388
Diversity (d) 7084
Distinct labelsets 133
Most frequent labelset Definition, 975

of labels over all training samples.

d =

N∑
i=1

L∑
j=1

y(i)j

he dataset statistics are listed in Table 3.

.1.3. t-SNE visualization
In order to visualize the distribution of data across grades, we

erformed t-SNE feature reduction and reduced the data to two
dimensions. The t-SNE plot for the same is visualized in Fig. 2.
Each paragraph in the dataset is labeled with the grade, it belongs
to. There are six grades and each grade is represented by a differ-
ent color in the plot. The graph depicts high correlation among
the concepts across various grades. Grade 12 data is distributed
across the whole graph because it covers all the concepts from
6th to 11th grades in greater detail. It is evident from the plot
that separating data on the basis of a specific grade is a very
challenging task.

3.1.4. Wordcloud
Wordcloud is used to visually interpret large scale text data.

The size of a word in the wordcloud is proportional to its fre-
quency in the text dataset. The wordcloud for our dataset is
shown in Fig. 2. This has been plotted after removing stop words
from the dataset corpus. The coloring has been done to make it
visually more appealing and readable. We observe that various
technical terms such as magnetic field, electric current and ve-
ocity have significant size denoting higher frequency across the
ataset. Thus, this plot can be used to infer the topics that are
aught most and have maximum importance.

.1.5. Lexical dispersion plot
We generated a lexical dispersion plot (Fig. 3) for 14 common

echnical terms that were drawn from the dataset corpus. These
erms were widely distributed across the data in the 6th to
2th physics curriculum. The motivation behind analyzing this
exical dispersion plot were: (i) to provide an alternative means of
visualizing the prevalence of these technical terms in the dataset,
(ii) to verify the presence of a clustering pattern (i.e., whether a
erm featured heavily for a particular grade or for a set of grades,
r whether it was widely spread across all grades), and (iii) to
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Fig. 1. (a) Vocabulary sizes over different grades, (b) Number of paragraphs in each grade, (c) Number of paragraphs per document in different grades, (d) Number
f paragraphs per label type.
Fig. 2. Left: Wordcloud for the dataset. Right: t-SNE visualization of the data points categorized by grades.
nalyze any correlation between these technical terms and the
rades.
It is observed that terms like Force and Energy, taught in

lmost every grade, appear throughout the plot. On the other
and, terms like semiconductor, wave, and atom appear mostly in

the higher grades because they are taught at a later stage. This
helps immensely in understanding how the concepts are taught
to the students and can be used to suggest improvements in the
educational system.

3.2. Experimental data for question classification

We now describe the second dataset that was used in the ex-
periments. This dataset is a publicly available dataset, released by
researchers from The University of Illinois at Urbana–Champaign
5

(UIUC), USA [57] to support research in the field of building
automated question-answering systems. It is primarily used for
learning an efficient question-type classifier for a given input
question. This dataset contains around 5500 labeled questions
with a hierarchical labeling structure. There are six parent classes
such as Entity, Description, etc. Each class has various subclasses
ranging from 2 to 22 in number. Brief dataset statistics are tabu-
lated in Table 4. Some sample questions and their corresponding
labels with meanings are shown in Table 5.

4. InPHYNet: Proposed architecture

In this section, we propose a general multi-task learning
framework that can be used widely for improving the perfor-
mance of the primary task by leveraging the network capabilities
of the auxiliary task in a coherent manner.
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Fig. 3. Lexical dispersion plot.
Fig. 4. A general structure of the InPHYNet framework. The primary task network takes in a primary task input and processes it within the primary LSTM network.
Next, the output of the primary LSTM network is passed into the weight alignment layer present inside the information exchange layer. Similarly, n auxiliary task
etworks take in auxiliary inputs and process them within the auxiliary LSTM networks. In every training epoch, the weights of the auxiliary LSTM networks are
ransferred to the Auxiliary Transfer LSTM (ATL) networks (depicted by the red arrows). There is a continuous feedback-loop mechanism in which the information
xchange layer works (depicted by the yellow arrow). The individual auxiliary task output predictions are done by the auxiliary task classification layers. The primary
ask output prediction is done by the information aggregation layer that takes inputs from the primary LSTM network and the information exchange layer.
able 4
tatistics of experimental data.
Statistic Value

Number of labels 47
Number of training samples 5452
Most frequent label ind, 962

Our problem setting consists of one primary task and n auxil-
iary tasks. Usually, the labeled data for the primary task is small
in size, whereas the labeled data for the auxiliary tasks is in
abundance. We aim to leverage the large amount of auxiliary task
6

Table 5
Sample questions and labels from experimental data.
Question Label

Who was The Pride of the Yankees? ind - an individual
What causes asthma? reason- reasons
What year was the NAACP founded? date- dates

data to improve the performance of the primary task. This can
be achieved by seeking the most relevant sequences of auxiliary
data for a given primary data sample. We identified the most
important auxiliary data sequences by using an attention-based
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t−1 are the primary cell and hidden states produced by the primary LSTM network at time step

− 1. xprimt is the primary input at time step t . ccomp
t−1 and hcomp

t−1 are the output composite cell and hidden states produced by the information exchange layer at time
tep t −1. These output composite states are fed back into the information exchange layer at time step t , forming the continuous feedback-loop mechanism depicted
y the yellow arrow in Fig. 4. cprimauxi

t and hprimauxi
t are the intermediate cell and hidden composite states, respectively, produced by the ith ATL network. These

intermediate composite states are provided as inputs to the weight alignment layer. cauxit−1 and hauxi
t−1 are the auxiliary cell and hidden states, respectively, produced

by the ith auxiliary LSTM network. xauxit is the auxiliary input at time step t to the ith auxiliary LSTM network. The red arrows depict the transfer of weights from
he auxiliary LSTM networks to the ATL networks. ⊕ represents element wise addition of two vectors.
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mechanism that quantifies the pertinence of each auxiliary task
data sample with respect to a primary data sample.

To this end, we modified a recently proposed Multi-Task
Learning (MTL) framework, called GIRNet [34], by adding a novel
weight alignment layer using a weight transfer strategy and
including Auxiliary Transfer LSTM (ATL) networks. Our multi-task
learning model called InPHYNet learns to selectively attend to
auxiliary recurrent neural networks (RNNs) in the model based
on their importance to each primary data sample. We used LSTMs
as our RNN blocks. However, these can be replaced by other RNN
blocks such as Gated Recurrent Units (GRUs) [58] or Neural Turing
Machines (NTMs) [59].

We briefly explain the general working of InPHYNet here
and defer the technical details of the individual components to
the subsequent sections. The general architecture of InPHYNet
is shown in Fig. 4. This framework consists of a primary LSTM
network and n auxiliary LSTM networks. The primary input and
the auxiliary inputs are passed into a pre-processing layer which
is responsible for converting raw textual inputs into a vectorized
form. The pre-processed primary and auxiliary vectors are passed
into individual learnable input embedding layers. The learnable
input embedding layers can be used to perform dimensionality
reduction on the pre-processed vectors.

Once we obtain the vector outputs from the learnable input
embedding layers, the primary embedding layer vector is passed
into the primary LSTM network, whereas the auxiliary embedding
layer vectors are passed into their corresponding auxiliary LSTM
networks.

Next, we introduce an information exchange layer that is re-
ponsible for transferring and combining the information from
7

the auxiliary LSTM networks in a parameterized fashion. The in-
formation exchange layer is run in a feedback-loop based fashion,
wherein the output of the layer at a particular time instance
t is the input to the layer at the next time instance t + 1.
The information exchange layer consists of n auxiliary transfer
LSTM (ATL) networks and a weight alignment layer. ATL networks
share weights with the auxiliary LSTM networks and are used to
produce ‘information vectors’ (which we call as composite states)
that are passed into the weight alignment layer.

The weight alignment layer combines the n composite states
rom the ATL networks to produce a combined information shar-
ng representation of the composite states. The primary objective
f the weight alignment layer is to quantify the significance
f each ATL network to the primary data sample by assigning
eights to each of the composite states produced by the individ-
al ATL networks. Once equipped with weights for each individ-
al composite state, we form weighted composite states. These
eighted composite states are next aggregated in the weight
lignment layer to form output composite states.
These output composite states are passed into the information

ggregation layer along with the primary LSTM network’s output
tates. The information aggregation layer is responsible for com-
ining the information present in the output composite states and
he primary LSTM network’s output states to produce the primary
ask output.

The auxiliary task outputs are produced by passing the auxil-
ary LSTM networks’ output states into separate aggregator func-
ions for each individual auxiliary task. An example of an auxiliary
ask aggregator function can be a softmax layer which produces a
ormalized probability distribution for each class in an auxiliary
ask.
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Fig. 6. LSTM block diagram.

A cross sectional view of the InPHYNet framework with the
ndividual state representations is shown in Fig. 5. Because In-
HYNet is primarily based on LSTM networks, we now pro-
ide a brief explanation of an LSTM network in Section 4.1.
ext, we present details on each sub-component of the InPHYNet
ramework.

.1. LSTMs and pre-processing layers

Since InPHYNet uses LSTM networks extensively, we follow
he below stated convention to describe an LSTM network in the
urther Sections. At time t , for an input xt , hidden state ht−1 and
ell state ct−1, we represent the output hidden state as ht and
utput cell state as ct . We use the following equation to represent
he LSTM network (see Fig. 6).

t , ct = LSTM(xt , ht−1, ct−1)

The input data for both the primary and auxiliary tasks is in
he form of raw text. We need a vectorized representation of
his data so as to map the input sentences into vectors which
an be fed into our InPHYNet architecture. This conversion of the
aw input sentences into vectors can be done by using multiple
reprocessing techniques such as:

• TF–IDF Vectors: Term Frequency–Inverse Document Fre-
quency (TF–IDF) calculates a value/score for each word
which represents it’s relative importance in the entire text.
This score is based on ‘normalized term frequency’ and
‘inverse document frequency’. It is computed as:

wi,j = tf i,j · log
(

N
dfi

)
,

where i is the input sentence index, j is the vocabulary
term index, N is the total number of documents (can be
input sentences or paragraphs), tf i,j is the term frequency
of the jth term in the ith sentence, and dfi is the document
frequency of the ith term. It has shown very good results in
determining the relevance of a word in documents [60].

• Count Vectors: In this technique, a unique vocabulary is
extracted from the entire text corpus. The vector representa-
tion for each input sentence is encoded as the counts of each
vocabulary term present in that corresponding sentence.

• Doc2Vec [61]: This technique converts the input sentence
into a vector by learning to predict a word based on the
surrounding contextual information. These vectors are a set
of numbers that help the network in understanding the
semantics and learning to perform the desired task.
8

• Elmo word vectors [46]: This technique generates vectors
for each word by using context specific information (seman-
tic and syntactic) after training a deep bidirectional language
model.

• BERT word vectors [32]: This technique generates vectors
for each word by training a transformer network to extract
deep bidirectional representations.

• MT-DNN word vectors [47]: It generalizes the BERT bidi-
rectional language model by applying an effective regular-
ization mechanism and creates the word vectors.

.2. Learnable input embedding layer

Once the input raw text is converted into vector representa-
ions using one of the preprocessing techniques mentioned above,
hese vectors can be fed into the InPHYNet architecture. However,
hese vectors are static vectors and are not trained along with
he rest of the architecture. This can be a hindrance because
he input representations are very high dimensional and can be
parse. Therefore, a mechanism is needed that can simultane-
usly perform dimensionality reduction and preserve the context
imilarities between the words in the reduced multi-dimensional
pace.
Therefore, we use an input embedding layer to represent these

reprocessed sentence vectors. This layer is trained with the rest
f the InPHYNet network. There are separate learnable input
mbedding layers for the primary task and the different auxiliary
asks.

.3. Auxiliary LSTM networks

Separate auxiliary LSTM networks are used for each individual
uxiliary task. Let us assume that there are n auxiliary tasks and n
uxiliary LSTM networks. We denote xauxj =

[
x
auxj
1 , x

auxj
2 , . . . , x

auxj
n

]
o be an auxiliary task input for task j, where x

auxj
i is the ith

ime training sample. We also denote yauxj to be the correspond-
ng training label for task j. We denote the jth auxiliary LSTM
etwork’s hidden state at time instance t as h

auxj
t . Similarly,

he jth auxiliary LSTM network’s cell state at time instance t
s denoted as c

auxj
t . By this convention, the jth auxiliary LSTM

etwork equation is:

auxj
t , c

auxj
t = LSTM(x

auxj
t , h

auxj
t−1, c

auxj
t−1 ) (1)

The final output prediction for each separate auxiliary task j is
performed by a separate aggregator function (typically a neural
network) faggj that aggregates these auxiliary task output states
as:

yauxj = faggj (h
auxj
1 , . . . , h

auxj
n ). (2)

The loss for each auxiliary task is computed as

Lauxj = loss(yauxj , ŷauxj ), (3)

where function such as L1-norm, L2-norm, or cross entropy can
be used as loss functions. The loss of each separate auxiliary task
is optimized separately, but added together to the final network
loss.

4.4. Primary LSTM network

We denote xprim =

[
xprim1 , xprim2 , . . . , xprimn

]
to be a primary

task input, where xprimi is the ith time training instance. We also
denote yprim to be the corresponding training label. For a multi-

label setting, our model assumes that the labels are pairwise
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ndependent. Hence, theoretically there is no limit on the number
f different multi-label classes that can be supported.
We denote the primary LSTM network’s hidden state at time

nstance t as hprim
t . Similarly, the primary LSTM network’s cell

state at time instance t is denoted as cprimt .
Then, by our convention, the primary LSTM network equation

is:

hprim
t , cprimt = LSTM(xprimt , hprim

t−1 , cprimt−1 ) (4)

The primary hidden state hprim
t is further used in the weight

alignment layer to assign weights to the composite states. These
weighted composite states are aggregated in the weight align-
ment layer to produce output composite states. The output com-
posite states are used for primary task prediction along with the
primary LSTM network’s output cell and hidden states.

4.5. Information exchange layer

We use the information exchange layer, to efficiently leverage
the learning done by the auxiliary LSTM networks, with regard to
the primary task data samples. The information exchange layer
consists of two components: (i) n auxiliary transfer LSTM (ATL)
networks , and (ii) a weight alignment layer. The entire informa-
tion exchange layer works in a feedback-loop arrangement where
the output in the tth time instance is the input to the layer in the
(t + 1)th time instance. Next, we explain both the components of
the information exchange layer in depth.

4.5.1. Auxiliary Transfer LSTM (ATL) networks
The ATL networks are used to provide ‘information vectors’

or the composite states to the weight alignment layer. We use
a weight transfer strategy for the ATL networks wherein at every
time instance t , we transfer the weights of the jth auxiliary LSTM
network to the jth ATL network. This ensures that we retain the
information context of the auxiliary LSTM networks in the ATL
networks.

Our ATL networks differ from a standard LSTM network be-
cause they do not take any input. Hence, the transfer strategy
used for the ATL networks helps in processing the cell and hidden
states in the absence of any input.

Our ATL network input cell and hidden states at a time in-
stance t are the output cell and hidden composite states that are
produced as the outputs of the weight alignment layer at time
instance t − 1. This ensures that the feedback-loop arrangement
for the information exchange layer is satisfied.

We denote the output hidden composite state at time t as
hcomp
t , the output cell composite state at time t as ccomp

t , the jth
ATL network’s hidden composite state at time t as h

primauxj
t , and

the jth ATL network’s cell composite state at time t as c
primauxj
t .

Thus, we represent the jth ATL network functionality as:

h
primauxj
t , c

primauxj
t = LSTM(hcomp

t−1 , ccomp
t−1 ) (5)

The composite states that are produced by the ATL networks
are passed into the weight alignment layer.

4.5.2. Weight alignment layer
There are two major input components to the weight align-

ment layer:
• the composite states that are outputs of the ATL networks

and

• the hidden state of the primary LSTM network. s

9

The major goal of the weight alignment layer is to assign
weights to each of the composite states produced by the ATL
network to factor in the relevance of each composite state to the
current primary data sample. This is achieved by introducing an
attention-based mechanism [62] to improve the auxiliary context
sensitization of the network at every primary input data sample.
The composite states (hidden states and cell states) are converted
into the weighted alignment cell vectors a

primauxj
ct and weighted

alignment hidden vectors a
primauxj
ht where j represents each ATL

network used, t is the current time instance, αcj is the weight for
the alignment cell vector and αhj is the weight for the alignment
hidden vector. The weight alignment layer helps in quantifying
the relative importance of the composite states to the current
primary data sample. This importance is factored in by using the
primary task hidden state ht in the weight alignment layer.

The weight alignment layer is a neural network with some
non-linear layers followed by a sigmoid activation layer. The
sigmoid activation layer ensures that all the alignment vector
weights are squashed within the range [0, 1]. This normalizes
the alignment vectors and ensures that the individual alignment
vector elements do not overflow over a certain threshold. Further,
this weight alignment layer network is used to produce the
weights for the alignment vectors. The alignment cell and hidden
vectors and their weights can be represented as:

αcj = σ

(
fc

(
c
primauxj
t , hprim

t

))
, (6)

αhj = σ

(
fh

(
h
primauxj
t , hprim

t

))
, (7)

acjt
= αcjc

primauxj
t , (8)

and

ahjt
= αhjh

primauxj
t , (9)

where fc and fh are the non-linearity functions used in the weight
alignment layer and σ is the sigmoid activation function.

These alignment vectors are used to compute two context
vectors for that particular primary task time instance, i.e., the
hidden context vector βh

t and the cell context vector βc
t . These

context vectors help to capture the net importance of all ATL
networks for the primary task data sample for the time instance
t . They are represented as:

βh
t =

∑m
j=1 ahjt∑m
j=1 αhj

, (10)

and

βc
t =

∑m
j=1 acjt∑m
j=1 αcj

. (11)

The output hidden composite state hcomp
t and output cell com-

osite state ccomp
t are computed by taking into account the

eighted alignment vectors as well as the context vectors. There-
ore, these are represented as:

comp
t =

m∑
j=1

ahjt
+ βh

t · hcomp
t−1 , (12)

nd

comp
t =

m∑
j=1

acjt
+ βc

t · ccomp
t−1 . (13)

Thus, at every time instance t , the primary task feature repre-
entation is enhanced by employing a weighted alignment model
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hat will learn to take into account the relative importance of each
omposite state produced by the ATL networks in that particular
ime step. These output composite states are used to update the
omposite states in the next step, creating a continuous feedback
oop that greatly enhances the representation of the primary task
utput state information.

.6. Information aggregation layer

This layer is used to produce the final primary task output.
his final output for the primary task is a conflated representation
f both the output composite states (from the weight alignment
ayer) as well as the primary task output states (from the pri-
ary LSTM network). The prediction is performed by a neural
etwork gagg which aggregates the output composite states and

the primary task output states:

yprim = gagg ([h
prim
1 , . . . , hprim

n ]; [hcomp
1 , . . . , hcomp

n ]) (14)

he loss for the primary task is computed as:

prim = loss(yprim, ŷprim) (15)

here loss can be any loss function such as L1-norm, L2-norm, or
he cross entropy.

.7. Joint optimization of primary and auxiliary losses

The primary LSTM network, auxiliary LSTM networks and the
nformation exchange layer are jointly optimized by simultane-
us training. For every iteration, we take a sample of primary
nput xprim and one sample each for every auxiliary task input
auxj where j is the auxiliary task index. The primary (Lprim) and
auxiliary (Lauxj ) losses are computed as described above. The final
loss of the overall network is computed as a weighted sum over
the primary and auxiliary losses with a parameterized weight of
µj given to each of the auxiliary task losses:

Lnet = Lprim +

n∑
j=1

µjLauxj (16)

. Experimental setup

.1. Baseline models

In order to compare the performance of the proposed In-
HYNet architecture, we consider 7 baseline machine learning
odels:

• Gaussian Naive Bayes classifier (Gaussian NB): It is a prob-
abilistic classifier that is based on applying Bayes’ theorem
with strong independence assumptions between the fea-
tures. Here the assumption is that the input data points are
drawn from a gaussian distribution.

• Multi-label K-nearest neighbors (ML-KNN) [63]: It is a
classifier that employs a lazy multi-label approach on top of
the existing K-nearest neighbors algorithm. After identifying
the K-nearest neighbors for a test point, maximum a poste-
riori (MAP) principle is utilized to determine the labelset for
the corresponding test point.

• Decision Tree classifier: It is a predictive modeling ap-
proach to target classification based on the relative impor-
tance of the input features.

• Random Forest classifier: It is an ensemble learning tech-
nique where a multitude of decision tree classifiers are
clubbed together to improve target classification accuracy.
10
• Multinomial Naive Bayes classifier (MultinomialNB): It is
a probabilistic classifier similar to a Gaussian naive Bayes
classifier with the assumption that the input samples are
drawn from a multinomial distribution.

• Multi Layer Perceptron with relu (MLP(relu, 1, 100)): A
multi layer perceptron is a feed-forward neural network.
This particular neural network consists of one hidden layer
with 100 neurons, each having a relu activation function.
The relu function is defined as relu(x) = max(0, x).

• Multi Layer Perceptron with sigmoid (MLP(sigmoid, 1,
100)): This particular perceptron network consists of one
hidden layer with 100 neurons each having a sigmoid (σ ) ac-
tivation function. The sigmoid function is defined as σ (x) =

1
1+e−x .

Along with the above mentioned machine learning models,
we train three deep learning models, namely a vanilla LSTM
classifier, the GIRNet model and the pre-trained BERT model. The
hyperparameters for these models are stated below:

• Vanilla LSTM classifier: We use a classifier with an LSTM
network block followed by a softmax activation layer. The
LSTM network block uses 512 dimensional hidden and cell
states.

• GIRNet model: We use the GIRNet model with one auxiliary
task. The primary and auxiliary datasets we use to train the
GIRNet are used in a similar setting as described for training
InPHYNet in Section 5.2.

• Pre-trained BERT model: We use a pre-trained BERT model
containing 12 transformer layers with 768 hidden units, 12-
multi-attention heads, and 110M parameters.3 This model
was pre-trained on the BookCorpus4 and English Wikipedia5

datasets. We fine-tune the final classification layer of this
model for our primary multi-label classification task.

All the aforementioned classifiers can be used directly for
inary or multiclass classification settings. However, since our
roblem setting is multi-label in nature, we apply three perti-
ent problem transformation techniques to each of these clas-
ifiers (except ML-KNN) to make them suitable for performing
ulti-label classification. The following problem transformation

echniques were used in this work:

• Binary Relevance: Let us suppose there are C different
classes for the multi-label classification problem. In the bi-
nary relevance technique, each of the C labels are treated
as independent target labels and therefore C independent
classifiers are trained for a binary classification setting. For
a test sample, each classifier predicts an output for its own
target label.

• Classifier Chain [64]: This problem transformation tech-
nique involves converting a multi-label classification prob-
lem into several binary classification problems. Here, labels
are predicted sequentially for each classifier, and the output
of all previous classifiers are used as features to subsequent
classifiers for the subsequent target labels.

• Label Powerset: This is an extreme case of problem trans-
formation wherein all possible combinations of target labels
are taken into consideration. These labels are considered as
unique labels for a multiclass classification problem. Thus,
one classifier is trained to predict one of these unique labels.

3 https://huggingface.co/bert-base-uncased.
4 https://yknzhu.wixsite.com/mbweb.
5 https://en.wikipedia.org/wiki/English_Wikipedia.

https://huggingface.co/bert-base-uncased
https://yknzhu.wixsite.com/mbweb
https://en.wikipedia.org/wiki/English_Wikipedia
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Table 6
Description of the evaluation metrics used.
Metric Description Formula

Hamming loss (HL) It is the fraction of incorrectly
classified labels

HL =
1

|N|·|L|

∑
|N|

i=1
∑

|L|
j=1 yi,j ⊕ zi,j

Jaccard similarity coefficient (J) It is also known as intersection
over Union and gives us a
measure of similarity between
predicted labels and ground truth

J(A, B) =
|A∩B|
|A∪B| =

|A∩B|
|A|+|B|−|A∩B| ,

where 0 <= J(A, B) <= 1

0/1 Loss (L) This gives us the fraction of
misclassifications

L(ŷ, y) = I(ŷ ̸= y),
where I is the indicator function

Mean average
precision (MAP)

It is the mean of the average
precision scores for each query

MAP =

∑Q
q=1 AveP(q)

Q
where Q is the number of queries

Macro F1
score

It is the harmonic mean of
Macro Precision and Macro
recall of the n classes

MaP =

∑n
i=1 Precisioni

n ,

MaR =

∑n
i=1 Recalli

n ,
MacroF1Score = 2. MaP∗MaR

MaP+MaR

Micro F1
score

It is the harmonic mean of
Micro Precision and Micro
recall of the n classes

MiP =

∑n
i=1 Precisioni

n ,

MiR =

∑n
i=1 Recalli

n ,
MicroF1Score = 2. MiP∗MiR

MiP+MiR
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5.2. InPHYNet model hyperparameter settings

InPHYNet is trained to perform multi-label classification for
he problem setting. The primary task is the multi-label predic-
ion for physics K-12 text for which the primary dataset ‘‘Multi-
abel Physics K-12 dataset’’ (described in Section 3.1) is used.
ince only one auxiliary task is used, n denoting the number of
uxiliary tasks is set to one. The auxiliary task is the multi-class
rediction of question types for which the ‘‘Experimental Data for
uestion Classification’’ (described in Section 3.2) is used.
Experiments are performed by keeping all model hyperpa-

ameters constant except those of the preprocessing layer. The
nput embedding layers of all the tasks (primary and auxiliary)
se a fixed length input encoding vector of 500 dimensions. The
utput vectors from the embedding layers are passed into the
rimary and auxiliary unidirectional LSTMs. The primary unidi-
ectional LSTM uses 512 dimensional hidden and cell states. For
he auxiliary unidirectional LSTM, 512 dimensional hidden and
ell states are used. The auxiliary transfer unidirectional LSTM
ses 512 dimensional hidden and cell states similar to that of
he auxiliary unidirectional LSTMs. The weight alignment layer is
two-layer fully connected feed-forward neural network with
024 neurons in each layer. Sigmoid activation function is used
or both first and second layer of the neurons.

A softmax layer is used as the output classification layer for
he auxiliary task. The information aggregation layer is a two-layer
etwork. The first layer in the information aggregation layer is
fully-connected linear layer that outputs a fixed length vector
orresponding to the output dimension. This vector is converted
nto a probability vector by passing it through a softmax layer.
his softmax output is thresholded to obtain the final multi-
abel outputs. In experiments, two separate pre-processing layers,
amely Doc2Vec and TF–IDF vectors are used. Since our textual
ata domain is primarily school-level Physics, we did not want
ur model to be biased due to any out-of-domain vocabulary
ets either through the use of auxiliary task datasets or pre-
rained language models such as BERT, ELMO and MT-DNN. We
herefore used only the non pre-trained TF–IDF and Doc2Vec
odels. Both the TF–IDF and Doc2Vec pre-processing layers are

rained and validated solely on our primary task physics dataset.
he vocabulary size for the TF–IDF vectors for the primary Physics
ataset is 9743. Analysis is done on the results obtained by two
re-processing layers separately.
For each of the two separate pre-processing layer configu-

ations, the InPHYNet model is trained for 50 epochs. Adam
11
optimization strategy is used to help achieve faster convergence.
A batch size of 64 is used to process the input data samples. Cross-
entropy loss function is used to perform the backpropagation. The
loss function plots are shown in Fig. 7. Gradient clipping is applied
to avoid exploding gradients which could affect the optimization
of the model. All the gradients are clipped at a maximum value
of 10. A learning rate of 0.001 is used. The final loss is computed
with a µ1 value of 0.5 for the auxiliary task (Eq. (16)):

NetLoss = PrimaryLoss + 0.5 × AuxLoss. (17)

.3. Evaluation metrics

As described by Wu and Zhou [65], the models are evaluated
sing six different metrics that are most prevalent for multi-label
lassification. The evaluation metrics used are listed in Table 6.

. Experimental results

Results of the multi-label classification are shown for each of
he two preprocessing layers used (as explained in Section 4.1).
or each preprocessing layer setting, results are reported for
leven best baseline machine learning models and three deep
earning models: Vanilla LSTM classifier, BERT and the GIRNet
odel along with the proposed InPHYNet model. Results of
oc2vec are shown in Table 7 and of TF–IDF vector are shown
n Table 8.

We observe that InPHYNet with the TF–IDF pre-processing
utperforms the BERT model. However, InPHYNet with the
oc2Vec pre-processing model performs worse than the BERT
odel. We believe that this is because of the Doc2Vec’s inability

o learn high quality paragraph representations for unseen data.
urther, as portrayed by the TF–IDF pre-processing results, the
F–IDF latent representations learnt are more structured and
xpressive than the Doc2Vec and BERT representations.
As is evident from the results, InPHYNet outperforms all the

aseline models and provides best results for all TF–IDF prepro-
essing methods used.

.1. Class-wise representations

.1.1. Relation between grades and concepts difficulty
We performed an analysis on the difficulties of concepts taught

o students as they move to senior grade classes. Results of four
ypes of experiments are presented in Table 9. The model is
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Fig. 7. (a)–(b): Plots of the primary and total loss values respectively for model trained with Doc2Vec preprocessing. (c)–(d): Plots of the primary and total loss
values respectively for model trained with TF–IDF preprocessing.
Table 7
Results for doc2vec vector preprocessing of paragraphs. The abbreviations represent problem transformation techniques. BR — Binary Relevance, CC — Classifier Chain,
LP — Label Powerset. The values in bold are the best results obtained across all models.
Classifier Hamming loss Jaccard similarity score 0/1 loss Average precision Macro F1 score Micro F1 score

MLP (sigmoid, 1, 100) - BR 0.17 0.399 0.764 0.225 0.216 0.484
MLP (relu, 1, 100) - BR 0.166 0.354 0.805 0.238 0.252 0.476
MLP (sigmoid, 1, 100) - CC 0.173 0.41 0.757 0.222 0.223 0.487
MLP (relu, 1, 100) - CC 0.18 0.393 0.77 0.227 0.258 0.473
MLP (sigmoid, 1, 100)-LP 0.172 0.417 0.746 0.219 0.206 0.488
MLP (relu, 1, 100) - LP 0.175 0.42 0.746 0.226 0.245 0.486
GaussianNB - BR 0.229 0.122 0.981 0.214 0.226 0.338
Decision Tree - CC 0.24 0.294 0.893 0.207 0.25 0.397
Decision Tree - LP 0.23 0.295 0.877 0.204 0.236 0.382
Random Forest - BR 0.169 0.359 0.794 0.216 0.176 0.454
MLkNN20 0.173 0.33 0.825 0.227 0.219 0.449
Vanilla LSTM (512 hidden states) 0.19 0.214 0.765 0.183 0.134 0.353
BERT 0.119 0.42 0.656 0.309 0.312 0.591
GIRNet 0.161 0.299 0.752 0.251 0.258 0.46
Proposed InPHYNet 0.135 0.381 0.703 0.323 0.369 0.552
trained on the material of the grades specified in the first column
and is tested on the grades mentioned in the second column. We
observe that the model’s accuracy is maximum when it is trained
on 11th and 12th grades. This is intuitively analogous to how
learning happens in school, wherein a student of higher grade
would be covering the topics in much more detail and hence,
would be able to answer the questions based on concepts of
lower grades very well. In contrast to this, when we train our
model on 6th to 10th grades and test on 11th and 12th grades,
we notice a drop in the accuracy. This is again analogous to
how a student learns in school, wherein there are various new
and deeper concepts covered in higher grades which would be
difficult for the students in lower grades to understand. Thus,
our trained models are performing in consonance with how a
12
student learns concepts in school on the intended task of text
classification in physics.

The plots for the validation categorical accuracy and loss are
shown in Fig. 8. Studies similar to this current work may prove, in
particular, very helpful to researchers in the educational field [66]
and may help in devising better strategies on curriculum design
and pedagogy.

6.1.2. Effects of gradewise training
To assess the representational capacity of conceptual ma-

terial in each grade, we created seven separate training sets
T6, T7, T8, T9, T10, T11, T12, where Ti represents the ith grade’s
training data. The number of training samples in each training
set are kept equal to avoid any noise or bias within the training
data across grades. A separate set of fixed size was held out.
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Fig. 8. (a) Plot of training loss vs. epochs, (b) Plot of validation categorical accuracy vs. epochs, (c) Plot of validation loss vs. epochs.
Fig. 9. (a) Plot of validation categorical accuracy vs. epochs, (b) Plot of training loss vs. epochs, (c) Plot of validation loss vs. epochs.
able 8
esults for TF–IDF vector preprocessing of paragraphs. The abbreviations represent problem transformation techniques. BR — Binary Relevance, CC — Classifier Chain,
P — Label Powerset. The values in bold are the best results obtained across all models.
Classifier Hamming loss Jaccard similarity score 0/1 loss Average precision Macro F1 score Micro F1 score

MLP (sigmoid, 1, 100) - BR 0.146 0.406 0.767 0.246 0.269 0.519
MLP (relu, 1, 100) - BR 0.132 0.483 0.695 0.299 0.386 0.592
MLP (sigmoid, 1, 100) - CC 0.15 0.462 0.719 0.245 0.284 0.539
MLP (relu, 1, 100) - CC 0.144 0.508 0.675 0.282 0.382 0.57
MLP (sigmoid, 1, 100) - LP 0.154 0.462 0.705 0.229 0.25 0.517
MLP (relu, 1, 100) - LP 0.151 0.484 0.695 0.26 0.336 0.55
GaussianNB - BR 0.61 0.252 0.984 0.2 0.306 0.365
Decision Tree - CC 0.197 0.377 0.821 0.229 0.323 0.468
Decision Tree - LP 0.195 0.399 0.79 0.229 0.319 0.476
Random Forest - BR 0.133 0.462 0.699 0.266 0.29 0.557
MLkNN20 0.145 0.438 0.737 0.252 0.306 0.54
Vanilla LSTM (512 hidden states) 0.191 0.236 0.734 0.26 0.237 0.382
BERT 0.119 0.42 0.656 0.309 0.312 0.591
GIRNet 0.127 0.429 0.617 0.341 0.451 0.6
Proposed InPHYNet 0.109 0.462 0.547 0.381 0.424 0.632
This set contains equal number of data samples from each of
the seven grades’ training data. In this experiment, the held out
test set contains 350 data samples (50 samples from each of
the seven classes). We trained InPHYNet independently on each
of the grade-wise training sets Ti. We analyzed the obtained
categorical losses and validation set accuracy to determine the
quality of each of the seven trained models. We also compared
the accuracy obtained by each of the grade-wise models on the
held-out test set to understand the representational power of the
data present in every grade’s training set (Table 10).
13
Table 9
Results depicting the relationship between grades and concept difficulty.
Grades trained on Grades tested on Validation accuracy Test accuracy

11 , 12 6, 7, 8, 9, 10 0.64 0.61
6, 7, 8 9, 10, 11, 12 0.31 0.28
6, 7, 8, 9, 10 11, 12 0.54 0.50
9, 10, 11, 12 6, 7, 8 0.61 0.57

We observe that the models trained on 11th and 12th grades
achieve very high accuracy on the test set. This can be intu-

itively attributed to the fact that the training sets of 11th and
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Fig. 10. Plots depicting the feature importance of certain specific vocabulary terms for each label type.
able 10
esults depicting the effect of gradewise training experiment.
Grades trained Test accuracy

6 0.31
7 0.44
8 0.39
9 0.67
10 0.2
11 0.65
12 0.55

12th grades have the higher power of concept representation
compared to other grades. This is because 11th and 12th grades
have the highest requirement of conceptual understanding. This
is analogous to the scenario wherein a 11th grade or a 12th grade
14
student is much better equipped to understand concepts rather
than a student from a lower grade class.

Another interesting observation is that the model trained on
9th grade achieved highest accuracy. We attribute this property
to the wide variety of chapters present in the training data of
grade 9. Due to varied chapter representation, the model is able
to understand a wide range of contextual information across all
grades and hence, is able to perform very well on the test set.

One particular anomaly that we notice is the surprisingly low
accuracy of the model trained on grade 10. We hypothesize that
this may either be due to an unfortunate split of the training data
of grade 10 or the level of constriction of chapters in the grade
10 material. The plots for the validation categorical accuracies and
losses are shown in Fig. 9.
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Fig. 11. Heat map depicting the importance of words in four different input paragraphs and their corresponding labels. The darker the shade of red of a word, the
ore important it is for the label prediction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle.)
.2. Feature importance

In order to better understand the model and to gain an intu-
tion of the importance of each vocabulary term for a particular
abel, we plot the relative feature importance of a few commonly
ccurring terms (refer to Fig. 10). To do this, we consider only
he feature vectors generated by these vocabulary terms as data
nd the corresponding annotations of a particular label as the
abels and compute their feature importance. This plot depicts
he importance of the chosen terms for determining a particular
abel. We see that the word most related to the label gets the
aximum importance in almost every case. For instance, the
ords ‘‘called’’ and ‘‘defined’’ have the maximum importance for
he label Definition. Likewise, word ‘‘example’’ has the maximum
mportance for the label Examples.

.3. Heatmap

We also generated a heat map depicting the significance of
erms within an example paragraph. This gave us a clear under-
tanding of the importance of each word in a paragraph and in
etermining the set of labels for that particular paragraph. To
isualize this, we studied the alignment vector weights learned
or the corresponding input paragraph. A higher value represents
ore significance i.e. more importance of a particular term for

he primary task. Some examples of heatmap representations are
hown in Fig. 11. The importance is indicated by various shades of
ed, with darker shades denoting the more important terms and
ighter shades representing less important terms.

InPHYNet yields significant accuracy on the dataset and can
e used for any education-based text classification/annotation
urposes. Thus, InPHYNet can be used as a module within the
ducational questioning answering systems to improve their per-
ormance, similar to the ones proposed by Atapattu et al. [67]
nd Alzetta et al. [68].

. Discussion

A vital component of every questioning answering system
s a question type classification module. The contributions of
ur work in this are two fold. Firstly, we have curated a well
nnotated dataset to carry out this task. Secondly, we propose
nPHYNet, an architecture to carry out the multi-label text clas-
ification task, setting up a new standard for question type clas-
ification specific in the educational domain.
15
7.1. Implication of this work

This work can have far reaching impact in the area of edu-
cation. As noted in Section 2.1, a lot of work has been done in
the area of education for enhancing the learning experience of
students using technology. A lot of existing work in the domains
of intelligent tutoring systems, question answering systems and
response evaluation modules can be leveraged along with the
proposed InPHYNet architecture to build high performance ed-
ucational question-answering systems and tutoring agents. Such
systems can be deployed in educational institutions to reduce
the burden on teachers and improve the learning experiences
of students. This will help the educational systems as a whole,
generally, overwhelmed with the increasing number of students,
while enhancing the learning of students.

7.2. Limitations

The current work suffers with some limitations summarized
as below.

• Limited size of our self curated dataset: In order to make
the most of deep learning models, a primary need is a large
data set. But there is a dearth of well annotated data with
respect to text classification in education. For example, in
the absence of a curated dataset for physics education, we
prepared our inhouse dataset. Although we used multitask
learning network to obtain reliable results with our small
inhouse dataset, there is a need of the availability of large
curated dataset for different school subjects for building
intelligent tutoring systems. This can really boost research
worldwide in this area.

• Focus on text only: Our dataset focuses on the textual part
of the documents. However, diagrams and figures form an
important aspect of teaching subjects such as physics. There
is a need of a dataset that also includes images and videos.

• Dataset built for physics: Our study focused on grade 6–12
physics. However, with evident lack of well-curated dataset
of educational texts, it may be preferable to expand this
dataset to include more subjects.

• Focus on CBSE curriculum: Our dataset and study focused
on the CBSE curriculum for the data. But, worldwide and
even within India, different curriculum are followed. Thus,
there is a need to widen this dataset for even school physics.

• Using InPHYNet in other tasks: The proposed architecture,
InPHYNet can be used for other text classification tasks with
focus on educational domain.
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• Construction of an end-to-end QA system: Taking the mo-
tivation for this work forward, we can build a QA system
wherein this classification task helps us in two ways: (i)
It can help reduce the human dependency on manual an-
notation of the dataset; and (ii) It can form an essential
part of the document retrieval unit by helping develop an
understanding of the context of the text in the document.

7.3. Future work

In the future, we would like to explore the use of better latent
representations for paragraphs. This could lead to better repre-
sentational capacity of the network architecture. We would also
like to build a network based solely on self attention rather than
the traditional LSTM blocks in our network. We believe this would
help us in learning shared features between the primary and
auxiliary tasks at a larger scale and would require lesser amount
of network training time. One potential architecture could be the
Transformer Network proposed by Vaswani et al. [69]. Further, in
the near future, this work can potentially be used for enhancing
the quality of question-answering systems in the educational
domain.

8. Conclusion

In this paper, we present a new architecture namely, In-
PHYNet, a generic question type classification module for the
multilabel classification of paragraphs of school physics of 6th to
12 grade. The proposed work can be utilized to build automated
intelligent tutoring or question-answering systems for education
domain. The physics multi-label classification dataset can also be
used as an auxiliary task in conjunction with the other primary
text classification task to improve the accuracy of the primary
task. This can particularly be exploited in educational domain
question and answer type classification problem settings.
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