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Abstract—This paper proposes design of signal-matched
wavelets via lifting. The design is modular owing to lifting
framework wherein both predict and update stage polynomials
are obtained from the given signal. Successive predict stages
are designed using the least squares criterion, while the update
stages are designed with total variation minimization on the
wavelet approximation coefficients. Different design strategies
for compression and denoising are presented. The efficacy of
matched-wavelets is illustrated on transform coding gain and
signal denoising.

Index Terms—Signal-matched wavelet system; lifting scheme;
optimization techniques.

I. INTRODUCTION

Design of multirate filterbanks and wavelets is an active
research area explored extensively by applied mathematicians
and signal processing community. Wavelets have been applied
successfully in many areas applications including compres-
sion, denoising, pattern matching, watermarking, biomedical
signal and image processing, texture analysis, traffic model-
ing, etc. Compared to the traditional Fourier-based analysis,
wavelet analysis provides an option to choose different basis.
Since the basis here is not unique, it is natural to seek a wavelet
that is best in a particular context for a given signal.

Design of signal-adapted or signal-matched wavelets has
been addressed with lifting in [1-10]. The lifting technique
involves alternate predict and update steps. Although it is
easy to find the prediction stage filters, finding an update
filter offers a real challenge. One of the criteria used in the
literature to find the update filters is the minimization of
reconstruction error of even and odd indexed samples [1].
In [2,3], the update first structure with adaptation of the
update step is used. The update filter is changed based on
the local gradient information such that sharp variations in the
signal get less smoothened than the more homogenous regions.
Similar update method is used in [4]. In [5], a nonseparable
lifting is used on images with regularity conditions imposed.
In [6], directional interpolation is used with coefficients of
interpolation filter to optimize to adapt to statistical property of
image. In [7], authors have designed wavelets by minimizing
the difference between BWT (Block Wavelet Transform) and
KLT (Karhunen-Loève Transform) of signal. In [8], orthogonal
IIR (Infinite Impulse Response) filterbank is designed using

allpass filter in the lifting steps. In [9], geometry of the given
image is used to design new wavelet via lifting leading to local
and anisotropic filters. [10] has designed nonseparable filter-
banks which are pixel-wise adapted according to local image
feature.

In this paper, we propose to design signal-matched wavelets
using lifting wherein both predict and update stage polyno-
mials are obtained from a given signal. Successive predict
stages are designed using the least squares criterion, while the
update stages are designed with total variation minimization
on the wavelet approximation coefficients. We propose two
design methods. Method-1 designs signal matched filters with
no constraint of linear phase property imposed on filters, while
method-2 designs linear phase scaling and wavelet filters. We
test our design methods on some randomly picked speech and
music clips and compare results of designed wavelets with
standard wavelets on transform coding gain and signal de-
noising. The signal-matched wavelets are designed differently
for compression (illustrated via transform coding gain) and
denoising.

In [11], nonseparable wavelets are designed for images
using lifting using the criterion of variance minimization in
the wavelet space for the predict stage. For the update stage,
reconstruction error is minimized between the input signal and
the output signal after dropping the wavelet subband. The work
proposed in this paper is carried out independently of [11],
although it is noticed to have some similarity in the design
approach. This work differs from [11] in the following ways:

• In this work, we design signal-matched wavelets for 1-
D signals with 2-tap update and the predict polynomials
in the powers of z and z−1, respectively. This leads to
the design of signal-matched 5/3 and 9/7 wavelets with
one and two stages of predict-update pairs, respectively.
Other variations on number of filter taps or different
polynomials in z or z−1 will not lead to these wavelets.
On the other hand, [11] designs nonseparable wavelets
for images without any such focus.

• We show that signal-matched wavelets designed differ-
ently in different applications lead to better designs.
Here, a different approach is proposed to design matched
wavelet for denoising compared to compression.

• Also, we use total variation minimization constraint in



the update stage, while [11] uses a constraint related to
the nonseparable quincunx lattice of the image.

The paper is organized as follows. In section 2, we present a
brief review of lifting scheme. Section 3 presents our proposed
methods on signal-matched wavelet design. Simulation results
are presented in section 4. Some conclusions are presented in
section 5.

II. THEORY OF LIFTING IN BRIEF

Lifting, also known as second generation wavelets, is a
technique for either factoring existing wavelet filters into
a finite sequence of smaller filtering steps or constructing
new customized wavelet basis [12]. A general lifting scheme
consists of three steps: Split, Predict, and Update (Refer to
figure 1).

Split: In the split step, given input signal is split into
two disjoint sets, generally even indexed and odd indexed
samples, labeled as xe[n] and xo[n], respectively. The original
signal can be recovered perfectly by interlacing or combining
this even and odd indexed sample stream. The corresponding
filterbank structure is also called as the Lazy wavelet system
[12] and the related filterbank structure is shown in Fig. 2
with analysis filters labeled as H0(z) = Z{h0[n]}, H1(z) =
Z{h1[n]} and the synthesis filters as F0(z) = Z{f0[n]},
F1(z) = Z{f1[n]}.

Predict or Dual Lifting Step: In the predict stage, one of
these two disjoint sets is predicted from the other set. For
example, in figure 1(a), we predict even samples from the
neighboring odd samples by using the predictor P ≡ T (z).
Predict stage is equivalent to applying a high-pass filter on
the input signal. This step modifies the analysis high-pass
and synthesis lowpass filter, without changing other filters
according to the following relations:

Hnew
1 (z) = H1(z)−H0(z)T (z

2). (1)

Fnew
0 (z) = F0(z) + F1(z)T (z

2). (2)

Update or Primal Lifting Step: This step modifies the
analysis lowpass filter and provides the coarse approximation
of the signal. The update step is denoted with the symbol
U ≡ S(z). This is also called as the primal lifting step
or simply, the lifting step. Update step only modifies the
analysis low pass and synthesis high-pass filter according to
the following relation:

Hnew
0 (z) = H0(z) +H1(z)S(z

2). (3)

Fnew
1 (z) = F1(z)− F0(z)S(z

2). (4)

One of the major advantages of lifting scheme is that
each stage (predict or update) is invertible. Hence, perfect
reconstruction (PR) is guaranteed.

III. PROPOSED WAVELET DESIGN

In this section, we propose two methods of designing
matched wavelet via lifting. In the first method, we discuss
wavelet design without imposing the condition of linear phase
(LP) on filters. The second method designs linear phase filters.
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Fig. 1: Steps of Lifting: Split, Predict and Update
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Fig. 2: Two Channel Biorthogonal Wavelet System

A. Method-1: With no constraint of LP

Let us refer to figure 3 that considers the following filters
for the Lazy wavelet:

H0(z) = z−1, H1(z) = z−2, (5)

F0(z) = z−2, F1(z) = z−1. (6)

This set of filters gives perfect reconstruction with

x̂[n] = x[n− 3] (7)

Starting from this, we now present our method to design
predict and update stages.

1) Design of Predict Stage: The wavelet subband coeffi-
cients from the lower branch of figure 3(a) can be written as:

d−1[n] =xe[n]− P1(xo[n])

=x[2n− 2]− t0x[2n− 1]− t1x[2n− 3]

=
∑
k

h1[k]x[2n− k] (8)

where H1(z) = −t0z−1 + z−2 − t1z−3. Assuming that input
signal is rich in low frequency content, most of the input signal
energy after decomposition should lie in the lowpass band.
Hence, predict stage polynomial T (z) = t0 + t1z

−1 can be
obtained by minimizing the energy of the signal d−1[n] in the
high pass band, with the following least squares criterion

t̃ =min
t
‖d−1‖22

=min
t
‖b− At‖22 (9)
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Fig. 3: Analysis and Synthesis Filterbanks in Lifting Steps

where b =


x[2]
x[4]
x[6]

...

 , A =


x[3] x[1]
x[5] x[3]
x[7] x[5]

...
...

 and t =
(
t0
t1

)

The solution of equation (9) provides the estimated polynomial
T̃ (z), which can be used in equation (1) and (2) to update
h1[n] and f0[n], respectively.

B. Design of Update stage

Next, we propose to design the update stage. We rely on the
argument that the signal reconstructed from the lowpass filter
branch, depicted as x1[n] in figure 2, should be the closest
approximation of the input signal x[n]. In addition, wavelet
approximation coefficients should form a smooth signal with
dominantly low frequency information. Thus, the total varia-
tion of the subband signal a−1[n] should be minimum. This
helps us in formulating the optimization criterion to determine
the update stage U1 ≡ S1(z) = (s0 + s1z) as below:

s̃ = min
s
(‖x− x1‖22 + λ‖Da−1‖1) (10)

where s = [s0 s1]
T , D denotes the first differencing operation,

and small bold case letters denote the vector form of the
corresponding time indexed signals. In order to solve (10), we
note that we updated f0[n] after the previous predict stage.
It should be noted that both a−1 (vector form of a−1[n] in
Fig. 3(a)) and x1 (vector form of x1[n] in Fig. 3(b)) can be
written explicitly in terms of s. Equation (10) can be solved
using any optimization toolbox. We used CVX, a package for
specifying and solving convex programs [16,17]. Next, we
update h0[n] and f1[n] using (3) and (4), respectively. This
is to note that we look for global solution for the update stage
compared to many of the existing methods that design the
update stage using the local information. Also, the update and
the predict polynomials are 2-tap and in the powers of z and
z−1, respectively. This leads to the design of signal-matched
5/3 and 9/7 wavelets with one and two stages of predict-update
pairs, respectively. Subsequent predict and update stages can
be designed iteratively using the above procedure.

(a) Low pass filter

(b) High pass filter

Fig. 4: Frequency response of synthesis end filters

C. Method-2: With LP Filter Design

A linear phase filter is symmetric or anti-symmetric about
the center weight. On expanding filters h0[n] and h1[n] in
terms of polynomials T (z) and S(z) of predict and update
stage, it is noted that choosing T (z) and S(z) as below help
with the design of linear phase filters.

T (z) = t0(1 + z−1) and S(z) = s0(1 + z) (11)

IV. EXPERIMENTS AND RESULT

In order to validate our results on signal-matched wavelets,
we apply the proposed methods on speech and music signals.
Music signals are picked randomly from [18]. One stage
and two stages of predict and update are computed with
and without linear phase conditions. The resulting wavelet
system corresponds to the synthesis filters of lengths 5/3
(highpass/lowpass) and 9/7 (highpass/lowpass) with one and
two stages, respectively. Analysis side filters for one speech
and one music signal are presented in Table-1. Synthesis side
filters can be obtained as per equation (2) and (4). Since the
resulting wavelet system are signal-matched biorthogonal 5/3
and 9/7, it is appropriate to compare results with the standard
biorthogonal 5/3 and 9/7 wavelets. In both the experiments,
the value of λ in equation (10) is emipirically found to be
0.01. Frequency response of synthesis low pass and high-pass
filter is shown in Fig. 4 for one of the speech signal.

Next, we apply our design method on two applications-
compression via computation of transform coding gain and
denoising.

A. Transform Coding Gain

Transform coding gain is a common measure used to
ascertain the efficiency of the signal transform. It is defined
as the ratio of error power obtained by directly quantizing
input signal coefficients x[n] to the error power obtained
by quantizing the subband coefficients using an optimal bit
allocation strategy at a given average bit rate [13]. We have
used 1-level wavelet decomposition for transform coding gain.



Table-1: Matched wavelet filters of two signals 

S.No. Input Signal Filter Coefficients 

1. Speech-1 
Sampling frequency: 

fs =11.025 KHz 
Number of samples 

= 2712 

9/7 Filters 
h0=[ 0   -0.0004    0.0007   -0.1225    0.2578    0.7108    
0.3126   -0.1593    0.0007   -0.0003] 
h1=[ 0    0.0089   -0.0183   -0.5360    1.0016   -0.4642    
0.0167   -0.0086         0         0] 

5/3 Filters 
h0=[0   -0.1296    0.2380    0.7336    0.2648   -0.1360] 
h1=[ 0         0         0   -0.5445    1.0000   -0.5136] 

2. Music-1 
Sampling frequency: 

fs =11.025 KHz 
Number of samples 

= 10000 

9/7 Filters 
h0=[ 0   -0.0004    0.0007   -0.1192    0.2414    0.7091    
0.3293   -0.1615    0.0008   -0.0004] 
h1=[ 0    0.0090   -0.0178   -0.5569    0.9997   -0.4432    
0.0181   -0.0090   0   0] 

5/3 Filters 
h0=[0   -0.1404    0.2791    0.7183    0.2841   -0.1413] 
h1=[ 0         0         0   -0.5029    1.0000   -0.4973] 

 

Table-2: Results of Transform Coding Gain (in dB) 

Signal Transform Coding Gain 

MW 9/7 
LP 

MW 9/7 Standard 
9/7 LP 

MW5/3 
LP 

MW 
5/3 

Standard 
5/3 LP 

Speech-1 9.9852 9.6587 10.4833 10.0400 9.9838 9.2843 

Speech-2 5.3676 5.3629 4.7329 5.3659 5.3542 5.3777 

Music-1 3.6977 3.6756 3.3889 3.6665 3.6663 3.6952 

Music-2 4.2032 4.1938 3.6396 4.2011 4.1954 4.1987 

Music-3 15.7042 15.6912 15.1751 15.7041 15.7041 15.3920 
 

Table 2 presents transform coding gain results of our designed
matched wavelets (MW) with and without LP condition.
Results show that designed matched wavelet performs better
or comparable to the corresponding standard wavelets.

B. Proposed Matched Wavelet design for denoising Applica-
tion

Discrete wavelet transform not only provides compact rep-
resentation for a wide class of signal, it has been proved to
be a powerful tool for signal denoising. Since our lowpass
filter is designed in the update stage considering that most
of the signal energy will move to the low frequency branch
of the filterbank, our proposed scheme of matched wavelet is
suited for signals rich in low frequencies. On the contrary,
noisy signal will be rich in high frequency content. Thus, we
use accumulator, which is a discrete time counterpart of an
integrator, on the given noisy signal x(n) as below:

y[n] =

n∑
k=0

x[k] (12)

where x[n] = 0, when n < 0. This step will convert
input noisy signal x[n] into dominantly lowpass signal y[n].
Resulting dominantly lowpass signal y[n] is fed as input to
our algorithm and wavelet filterbank is designed matched to
this signal y[n] [14]. After denoising as discussed in the next
paragraph, we apply first difference on the successive samples
of the output signal s[n] to obtain the actual denoised signal
x̂[n] according to the following relation:

x̂[n] = s[n]− s[n− 1] (13)

We add white Gaussian noise at 5dB SNR per sample. After
designing the matched system, soft-thresholding is applied

Table-3: Results of Denoising 

Signal PSNR in dB 

Noisy MW 9/7 
LP 

MW 9/7 Standard 
9/7 LP 

MW 5/3 
LP 

MW 
5/3 

Standard 
5/3 LP 

Speech-1 12.2799 13.1411 14.6771 14.6142 13.3723 12.9791 14.8226 

Speech-2 11.8505 12.2408 14.0847 11.8370 11.8474 12.1052 12.7556 

Music-1 12.3899 13.9266 16.0590 14.1605 13.7261 13.9833 14.6508 

Music-2 11.8106 12.4449 14.2614 11.9371 12.3360 12.4811 12.9840 

Music-3 11.8734 13.7756 15.4210 13.4330 13.2194 13.4132 13.8639 
 

on the wavelet coefficients. We have applied 3-level wavelet
decomposition for denoising. All the subband coefficients
are thresholded using Bayes Shrink threshold strategy [15]
except coarsest approximation coefficients. Table 3 shows
the comparison of the denoised results of speech and music
signals between matched wavelets and standard biorthogonal
wavelets. Peak signal to noise ratio (PSNR) is used as the
performance measure for denoising. Each experiment is per-
formed with 30 runs and the results shown here are the average
over all runs.

Discussion: From Table 3, the following observations are in
order:

• Signal-matched wavelet designed without LP constraint
gives better results of denoising compared to the one with
the LP constraint for both the 5/3 and the 9/7 wavelet.

• Signal-matched 9/7 wavelet without LP constraint is
working best on most of the signals considered. The
results are better compared to the standard 9/7 and 5/3
wavelets.

The above results are obvious because with linear phase
condition, we are constraining the design of matched wavelet
and it may deviate from the exact matching to the signal.
However, the LP matched wavelet design may be useful in
other applications. This is to note that denoising results on
standard 9/7 and 5/3 wavelets with the method of accumulator
and first difference are observed to be inferior. Hence, for the
brevity of the presentation, these have not been included in
the text.

V. CONCLUSION

In this paper, we have proposed two methods of designing
signal-matched biorthogonal wavelets via lifting using opti-
mization techniques. The proposed method designs matched
wavelet system with linear phase and without linear phase
constraints. In particular, we have designed signal-matched 9/7
and 5/3 wavelets with and without linear phase constraints.
We applied the proposed methods on some random speech
and music signals in the context of transform coding gain
and signal denoising. It is emphasized that signal-matched
wavelets should be designed differently for different appli-
cations. Results of signal-matched 9/7 and 5/3 wavelets are
better or comparable to the corresponding standard 9/7 and
5/3 wavelets, respectively.
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