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Abstract-Rapidly fluctuating multipath arrivals along with 

unpredictable surface wave focusing events render the shallow 

water acoustic channel difficult to track using sparse or least­

squared error (LSE) optimization techniques. This fundamental 

bottleneck is primarily due to the time-varying nature of the 

underlying distribution. In this work, we propose a 

complementary channel tracking technique that exploits the dual 

representation of the acoustic channel in the Fourier domain and 

employs two-dimensional frequency sampling using an 

application-inspired input dictionary. Specifically, we 

reformulate the time-varying channel tracking problem on a 

MIMO framework and design training symbols that sample the 

channel in its dual Fourier domain. Ground truths based on 

experimental field data are presented. 
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I. INTRODUCTION 

The fundamental bottleneck in undersea acoustic 
communications and sonar target detection is tracking and 
compensating for the rapidly fluctuating shallow water 
acoustic channel impulse response. Multipath arrivals from the 
transmitter to the receiver undergo non-stationary reflections 
at the moving sea surface and rough sea bottom [1,2]. 
Moreover, surface focusing events lead to unpredictable 
surges of energy in secondary delay taps [3], which are 
challenging to predict or compensate for. Figure 1 shows the 
channel impulse response as a function of time for a shallow 
water acoustic channel over experimental field data collected 
at 15 meters depth and 200 meters range over moderate to 
rough sea conditions. Delay refers to the delay taps 
constituting the channel impulse response at a given point in 
time point on the x-axis. We note that there are two bands of 
interference besides the direct arrival: (i) the primary 
multipath interference dominated by single surface reflections, 
and (ii) secondary multi path interference dominated by 
mUltiple bounce reflections between moving sea surface and 
rough sea bottom. Additionally, sparsely distributed high­
energy events such as surface wave focusing render tracking 
the dynamic shallow water channel exceptionally difficult. 

Sparse sensing techniques (see e.g. [4-13]) for tracking 
sparse phenomena has largely met with limited success in the 
undersea paradigm because of three related challenges: (i) the 
underlying energy distribution among the delay taps is non­
stationary, (ii) sparsity of the distribution itself fluctuates over 
time [5], and (iii) the build-up to high-energy events, which 
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may involve smaller components, gets suppressed by sparse 
optimization techniques, and often contain crucial information 
that classify and thereby, identify and compensate for high­
energy events. 

In this work, we propose a complementary approach to the 
acoustic communications and sparse sensing literature. We 
formulate the underwater channel estimation problem as a 
spectral sampling problem in the dual domain to the delay 
spread versus time representation in Figure 1. This dual 
representation has been investigated as the Delay-Doppler 
spread function and well-known to follow a banded sparse 
representation [13,14]. We extend the Delay-Doppler 
representation, which only considers the Fourier transform of 
the delay spread to consider the two-way Fourier transform in 
delay and time. This novel representation allows designing 
suitable input signal dictionaries for MIMO transmission and 
signaling recovery. Depending on context, we will use the 
terms delay spread and channel impulse response 
interchangeably in this work. 

II. CHALLENGES TO APPROPRIATE BASIS SELECTION 

Selecting a basis representation to track the non-stationary 
channel delay spread is an open challenge in shallow water 
acoustics. The unpredictable nature of high-energy focusing 
events, as well as the rapidly fluctuating channel delay spread 
due to non-stationary multipath evolution renders most 
adaptive representations ineffective for successful channel 
tracking. For example, wavelet representations fall short of 
sufficient representation due to the unpredictable distribution 
of oceanographic phenomena [3]. Figure 2 illustrates the time­
frequency representation of the same channel shown over two 
different observation window lengths: (i) 1.5 seconds, and (ii) 
7.63 seconds. Each window captures the shallow water 
acoustic channel over a quasi-stationary time-frequency 
window, commonly referred to in the acoustics literature as 
the Delay-Doppler spread function [1, 2, 4]. Delay-Doppler 
spread function is the one-dimensional Fourier transform of 
the Delay-Time channel representation (Figure 1 a) across the 
time domain (x-axis). The direct arrival manifests as the bright 
dot at the bottom and the two multipath bands generally 
manifest as sparse clouds of energy in the Delay-Doppler 
representation. 

From Figure 2, we note that the longer observation 
window, having more observed samples, shows higher 
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Figure I (b): Dual representation of Figure-I 

Figure-I(a) and Figure-l(b) correspond to an underwater acoustic channel 
over experimental field data collected at 15 meters depth, 200 meters range, at 
moderate to rough sea conditions (Data courtesy: Dr. James Preisig, Woods 
Hole Oceanographic lnstitution)_ 
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Figure 2(a): Delay-Doppler spread function of underwater channel 

estimated over an observation window of 1.5 seconds 
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Figure 2(b): Delay-Doppler spread function of underwater channel estimated 

over an observation window of 7,63 seconds, 

resolution. Moreover, the two different windows will exhibit 
different degrees of sparsity as different aspects of the time­
varying channel get localized. 

Resolution issues may be fixed by sampling more densely 
over the shorter observation window. However, choosing one 
window over the other leads to focusing on either the more 
transient aspects of the channel, e.g. the high-energy activity 
in the primary multipath band in figure 2(a) or the relatively 
steady components of the channel delay spread centered 
around the main arrival (bright spot at the bottom) and the 
time-averaged activity over the primary and secondary 
multipath bands. From an acoustic communications 
perspective, both these feature types are important to localize, 
as they carry information on key aspects of the channel. 
However, due to the uncertain nature of oceanographic 
reflections, it is hard to predict where the transient activity 
might occur, and if so, how frequently and for how long. 

Moreover, as explored in [14] the underlying sparsity of 
the channel itself may vary over time. This indicates that 
incoherence criteria for precise reconstruction [7] need to be 
adaptive over time as the observed channel changes. The 
intricate interplay between time-frequency localization and 
observed sparsity as well as its implications on measuring the 
actual sparsity are explored in more detail in [14] and outside 
the scope of this work. Local time-frequency sampling has 
been recently investigated in the sonar target detection 
literature [16] but have been largely unexplored in underwater 
acoustic communications. 

III. TECHNlCAL APPROACH 

The key idea behind our approach is to setup the channel 
estimation problem as a spectral sampling problem in the two­
dimensional space where each dimension represents the 
Fourier dual of delay spread and time as illustrated in Figure 
l(b). Let us consider the MIMO framework where input signal 

hi!" 
is a complex exponential x[i,Jd = elK, sampling K possible 



delay frequencies {j� }�:� across parallel sub-channels. These K 

sub-channels may be easily designed in baseband using 
appropriate frequency selective techniques. Let us further 
assume a granularity of L Doppler frequencies {f, }�:� for 

sampling the channel in the Doppler domain (dual to time 
domain). Therefore, if we model the channel impulse response 
to have K delays and L Doppler frequencies, then the received 
signal y[i, he] at time instant i in sub-channelfi is given as: 

K-I 
y[i,jk]= Lh[i,k]x[i-k], 

k=O 
K-I 27r(t-k)J; 

= L h[i, k ]/-K-, 
k=O 

21T.I./, K -I -.l21T.k./, 
=e.l-K Z>[i,k]e-K- (1) 

k=O 
where is the K-tap length time-varying channel specified at 

different time instants i. We can rewrite equation (1) as below: 
2ff.l./, K-l -j2ff.k./, 

Y[i,jk] = y[i,jk]e 
-
j-K- = Lh[i,k]e-K- (2) 

k=O 
On performing the I-dimensional Fourier transform along 

the first dimension (corresponding to the time variable i), we 
obtain 

ULf,,jk] = I Ih[i,k]e 
-
.l2

Z
i
J; 

e 
-j

2
�
kJ; 

(3) 

k=O /,=0 
Thus, we stack the received signal across an L-Iength 

observation window to set up an L x K observation matrix Y, 
where the column k of Y consists of modified (as in (2)) L 
temporal observations received through sub-channel k. On 
performing one-dimensional Fourier transform of Y across the 
first dimension, we obtain the estimate of U[ft, fi]. The two­
dimensional inverse Fourier transform of this will yield the 
channel estimate h[i,k]. 

In the case of noise free scenario, this will yield perfect 
channel recovery. In the noisy scenario, the problem can be 
modeled as below: 

V=FH+N (4) 

where V is the matrix representation of U[ftJk], H is the matrix 
representation of h[i,k] , F is the two-dimensional Fourier 
transform operator, and N is the complex white Gaussian noise 
matrix. Since the channel H is sparse, the problem can be 
formulated as BPDN (Basis Pursuit Denoising) problem [16] 
and mathematically given by: 

min IIHIII subject to: IIV-FHII::; (J (5) 

where Ilzlll denotes the sum of the absolute values of the 
vector z, Ilzll denotes the P norm of vector z, and (J is the 
standard deviation or the measure of the noise level. The 
problem can be solved with the MATLAB solver SPGLl, 
which can be downloaded from [17]. 

The advantage to this approach is that no feedback is 
needed between the transmitter and the receiver. In addition to 
the above, one may employ prior knowledge of acoustic 
physics to densely sample in the region where we expect more 
oceanographic activity. Such physical constraints were 
considered in related research on mixed norm optimization 
[13]. The input signal dictionary can be designed to detect 
more activity around the direct arrival and primary band, with 
loose sampling along the secondary band and sparse sampling 
elsewhere. 

IV. RESULTS 

In this section, we present results on the Delay-Doppler 
spread and its dual based on channel estimates [4] derived from 
experimental field data collected using BPSK-signaling (fig-I). 

We provide (Figure 3) a representative channel estimate 
employing non-convex mixed norm optimization [4] as the 
kernel solver to sample the non-stationary channel at several 
points in time spaced 23 milliseconds (approximately one 
channel length). We note that despite similar bands of activity 
there is noticeable distinction between the four temporal 
snapshots. We also note that despite areas of high activity, the 
channel itself is not very sparse, but nonetheless exhibits 
significant spikes that dominate over lower and diffused 
spread of smaller taps. These channel values are used as 
ground truths to simulate the received signal when the 
proposed signaling scheme (ref. Section 3, eqns. (1) to (3)) is 
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Figure 3: Representative channel estimates using [4] as kernel solver. 



used. Figure 4 shows the difference between the recovered 

channel h [i, k] and the ground truth h[i, k] in the case of noise 

free scenario. 
In the noisy scenario, additive white complex Gaussian 

noise is added to equation (1). The variance of the added noise 
(in dB) and the signal-to-noise ratio (SNR) of the estimated 
channel are given in Table-I. 

T bl I Ch a e- : anne l R  d N '  S ecovery un er OlSy cenano 

S.No. Variance SNR of the Mean Squared 

of noise received noisy Error (MSE) of the 

signal (in dB) estimated channel 

1. 0.03140 3.8112 0.0060 

2. 0.01000 9.6451 0.0033 

3. 0.00320 14.5597 0.0018 

4. 0.00099 18.9340 9.8202e-004 

5. 0.00031 23.6967 6.0524e-004 

We ran simulations over 50 iterations for each noise level. 
All experiments are performed on MA TLAB platform on a 
2.60 GHz i5 processor with 16 GB RAM. 
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Figure 4: Recovered channel and ground truth at time instant i 
in noise free scenario 

V. CONCLUDING REMARKS 

We present a formulation to estimate underwater acoustic 
channel by constructing a specific pre-defined input signal 
(signal dictionary) and presenting the received signal in the 
form of input received over Delay-Doppler spectrum of the 
time-varying underwater acoustic channel. The advantage to 
this approach is that no feedback is needed from the 
transmitter. In fact, this 2-dimensional frequency domain 
representation via input signal dictionary design in MIMO 
framework is similar to k-space representation in MRI. Similar 
to k-space MRI, the frequency domain representation of Delay­
Doppler channel spread is sparse. Channel recovery under 
noisy scenario is shown by formulating the proposed 
framework in the context of constraint optimization problem. 

Currently, we are working on designing a pre-selected input 
signal dictionary based on acoustic channel physics and 
employing an adaptive input signal dictionary that adapts 
sampling density around changing channel activity. 
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