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This paper proposes channel estimation using energy efficient transmission of signal dictionaries

for shallow water acoustic communications. Specifically, the multi-columned structure of the chan-

nel delay spread is exploited to design partially sampled dictionary in a two-dimensional (2-D)

frequency representation of the channel. The key contribution of this work is to achieve consider-

able energy saving in the transmission of complex exponential signals, designed specifically for

real-time shallow water channel estimation at the receiver. This is accomplished by harnessing 2-D

frequency localization with compressive transmission and modified-compressive sensing with prior

information to exploit the sparse structure of the rapidly fluctuating shallow water acoustic channel

in real time. The proposed technique reduces demands on transmitted signal energy by harnessing

the reconstruction ability of sparse sensing while retaining key non-sparse channel elements that

represent important multipath phenomena. Numerical evidence based on experimental channel

estimates demonstrates the efficacy of the proposed work. VC 2019 Acoustical Society of America.
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I. INTRODUCTION

A fundamental challenge to shallow water acoustic

communications and, hence, for autonomous underwater

vehicles (AUVs), is robust real-time estimation of the rap-

idly time-varying underwater channel. The shallow water

acoustic propagation channel manifests as a long delay

spread, e.g., typically of about 4–16 ms in the channel

impulse response. Further, the sparsity of the channel sup-

port is known to be time varying due to unpredictable shifts

in the multipath arrivals. The time-varying sparsity is a chal-

lenge posed by the shallow water acoustic channel, which

not only shows time variability across its delay taps due to

multipath arrivals but also across the sparsity of its support.

In particular, fluid motion, as well as time-varying multipath

reflections from the moving sea surface, leads to rapid fluctu-

ations in the channel impulse response, characterized by a

highly time-varying and long delay spread.

Furthermore, unpredictable shifts in the underlying

channel sparsity occur due to transient oceanic events such

as surface wave focusing.1 These oceanic phenomena as

well as Doppler shifts, due to surface reflection and fluid

motion, limit the reconstruction accuracy of most sparse

recovery techniques. In particular, localization of non-

stationary channel delay spread in time and frequency cou-

pled with changing sparseness of channel support2,3 renders

direct application of sparse sensing methods challenging in

the shallow water domain. This is particularly true under

moderate to rough sea conditions when fluid motion and

multipath channel effects are particularly pronounced and

lead to high-energy transients that directly impact the spar-

sity of the underlying channel delay spread.2,3 The perfor-

mance of least-squares techniques has been analyzed in Ref.

4 in the context of random matrix theory. Such non-sparse

techniques, if appropriately employed, can provide a com-

plementary approach to shallow water channel estimation.

In the compressive sensing (CS) literature, the idea of

compressive transmission is picking up pace where the cen-

tral idea is that if full data can be recovered from the sensing

of fewer data, it is better to transmit fewer data leading to

compressive transmission that would save resources, includ-

ing time and energy. Thus, compressive transmission leads

to energy savings and, hence, is also called energy efficient

transmission.5–7 While this idea is being used in biomedical

signal transmission,5–7 it has not been introduced so far in

the traditional acoustic communications. This concept may

prove extremely useful for underwater communication sce-

narios. For example, submarines/AUVs used for defense

purposes, in general, have limited power backup and are run

on batteries. Using the proposed methodology, considerable

energy can be saved by submarines/AUVs during transmis-

sion to the base station. Since base stations have sufficient

energy and computational power, employing any advanced

signal reconstruction method is not a challenge at the base

station.

This motivated us to explore energy efficient dictionary

transmission by transmitting dictionary elements (or basis

functions) only on fewer sub-channels instead of all

sub-channels. We harness a combination of compressive

sampling, non-uniform frequency selection, and sparsea)Electronic mail: ananya-sengupta@uiowa.edu
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recovery techniques in the two-dimensional (2-D) frequency

domain8–10 to achieve energy efficient transmission for real-

time channel estimation, and thereby, localize time-varying

oceanic phenomena in the shallow water paradigm. The syn-

opsis of the chosen channel model, related work, and key

contributions are presented next.

A. Implications of energy efficient transmission

Given practical considerations of real-life underwater

communication systems, energy efficiency is one of the

many factors that need to be considered. However, robust

communications is not the only goal of energy efficient

channel estimation presented in this work. Energy efficiency

for underwater signaling is an important consideration for

low-energy oceanic observations, which is emerging as an

important naval objective due to its potential for low-

invasive and covert surveillance applications. In this regard,

energy efficient channel estimation, due to its reduced aver-

age transmitted signal energy, can provide low-energy real-

time interpretation of acoustic scatterers within the ocean

environment. The problem of gleaning such information

from the channel impulse response, although very interesting

by itself, is a complex and active research question that falls

outside the scope of this work, and the curious reader is

directed to some preliminary work introduced in Refs. 11

and 12.

Compressive transmission by design employs drastically

lowered transmitted signal energy by transmitting only a

fraction of the overall encoding dictionary, and recovers the

high-energy channel components using sparse optimization

techniques. Through our results across channel simulations,

as well as experimental field data, we demonstrate that chan-

nel estimation using compressive transmission allows such

energy efficient observations of high-energy channel activ-

ity. For example, our compressive transmission technique

employed across the 2-D frequency domain separates the

high-energy steady-state aspects of the channel, e.g., the

direct arrival, from transient and unpredictable high-energy

events such as rapid multipath fluctuations. Such separation

of different types of channel activity allows real-time inter-

pretation of the shallow water acoustic channel using drasti-

cally lowered average transmission energy such as presented

in this work.

B. Channel model: 2-D frequency characterization and
sparsity of channel support

In this section, we adopt the 2-D frequency domain

characterization of the shallow water acoustic channel intro-

duced in Refs. 8–10, and use this representation for enabling

energy efficient transmission of exponential signals for chan-

nel estimation. Specifically, we adopt transmission of signals

over fewer subband channels leading to partial sampling of

dictionary that effectively samples the shallow water channel

in this representation non-uniformly, with 100% measure-

ments or an effective denser (non-sparse) sampling along the

steady-state channel components and sparse measurements

along the transient channel components. We now elaborate

on these separate channel components below.

The shallow water acoustic channel consists of primar-

ily two types of temporally overlapping multipath phenom-

ena: (i) high-energy transients and (ii) slowly varying

channel components. Figures 1(a)–1(c) illustrate how these

channel components manifest in different representations.

(i) High-energy transients in the channel activity: These

can occur due to unpredictable oceanic phenomena

such as constructive interference between different

multipath reflections, surface wave focusing events,

rapidly fluctuating scattering events, among others.

The key characteristic of these channel components is

that they manifest as the non-stationary or “transient”

component of the shallow water acoustic channel

along the higher Doppler frequencies. These high-

energy yet ephemeral events, therefore, contribute to

the sparse structure of the channel and can be best

estimated using sparse sensing techniques such

as13–15 those that optimize toward finding the

“outliers,” i.e., the high-energy channel components.

(ii) Steady-state or slowly varying channel components:

These occur due to the direct arrival from the trans-

mitter to the receiver, as well as the relatively steady

specular multipath reflections and diffused reflections

from rough sea bottoms. These channel components

constitute the “steady-state” part of the shallow water

acoustic channel that needs to be observed over lon-

ger periods of time for precise estimation. These are

best recovered by traditional least-squares techni-

ques.16,17 We note that slowly varying channel com-

ponents may themselves be high-energy, e.g., the

direct arrival from transmitter to receiver. The support

of these channel components may or may not be

sparse and depends on the channel representation. For

example, in the delay vs time representation in Fig.

1(a), the direct arrival manifests as the long bright

line at the bottom, whereas in the delay-Doppler

channel representation in Fig. 1(b), the direct arrival

shows up as a single bright dot at zero-Doppler

frequency.

C. Justification for channel representation

2-D frequency representation allows us to effectively

measure non-uniformly over the diverse channel components

where (i) for the steady-state channel components, regardless

of whether they are high- or low-energy and regardless of

whatever sampling rate they are picked up, non-sampled

measurements in the current time window are filled up with

the immediately previous time windows’ estimate (as noisy

measurements) because of being the steady-state component.

This leads to an effective sampling rate of 100% for steady-

state channel components, and (ii) the transient components,

which manifest in the outer columns, are measured (effec-

tively) at lower sampling rates in comparison to the steady-

state channel component. Support-constrained sparse recov-

ery is employed to capture only the high-energy transient

components. Other channel representations, such as the

delay-Doppler representation, do not offer this type of
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separation between the steady-state/persistent channel com-

ponents and transient channel components.

The channel model corresponding to the 2-D frequency

representation dissects all channel activity into slowly vary-

ing and/or steady-state components and rapidly fluctuating

non-stationary components. Slowly varying multipath arriv-

als and quasi-stationary scattering events (e.g., diffused

reflection from rocky bottom) tend to persist longer over

time and, therefore, may be considered as the steady-state

component of the channel that dominates the low-Doppler

regions of the 2-D frequency characterization. However,

high-energy transients due to unpredictable oceanic phenom-

ena, such as constructive interference between different mul-

tipath reflections, surface wave focusing events, rapidly

fluctuating scattering events, etc., manifest as non-stationary

components or transient components of the shallow water

acoustic channel along the higher Doppler frequencies.

We note that the 2-D frequency representation allows

this separation of the steady-state and transient components

of the channel more robustly than the delay-Doppler repre-

sentation. The reasoning behind this is as follows.

The direct arrival and the slowly varying channel delay

components occupy a single bright column at zero- and low-

Doppler (61 Hz) in the 2-D frequency representation (with

the Fourier transform in both the delay and time domains).

There is a very important distinction between this represen-
tation and the traditional delay-Doppler representation as
the latter only takes the Fourier transform along the time
domain and, thus, the energy at the really slowly varying or
quasi-constant delay taps (e.g., due to the direct arrival) is
smeared out across the Xs domain, which is the Fourier
transform along the delay domain (since Fourier transform

of an impulse, e.g., due to the direct arrival, will be a con-

stant at all frequencies in the frequency domain). Thus,

although the slowly varying components occupy the low-

Doppler frequencies in the delay-Doppler domain similar to

the 2-D frequency domain, they typically do not occupy dis-

tinct and different columns in the second dimension unlike

as in the 2-D frequency domain. From a partial sampling

perspective this means that it is more challenging to identify

the support sc in the delay-Doppler domain than in the 2-D

frequency domain.

D. Simulation evidence of adopted channel
representation

We now provide two separate channel simulations using

the well-known channel simulator18,19 to provide justifica-

tion for adopting the 2-D frequency domain as our preferred

channel representation in this work. Figures 2 and 3 repre-

sent two independent implementations of the shallow water

acoustic channel: (i) Fig. 2 shows the 2-D frequency repre-

sentations of a calm channel with less multipath activity and

transient scattering events, and (ii) Fig. 3 shows the 2-D fre-

quency representations of a rough channel with increased

multipath activity and higher intensity of transient scattering

events. We observe that the second channel in Fig. 3 indeed

exhibits more activity spread across higher Doppler frequen-

cies (e.g., bright spots at �2 Hz) and wider support for

Doppler activity (62 Hz vs 61 Hz). This is to be expected as

transient multipath activity due to the fact that time-varying

specular reflections from the sea surface will manifest at

higher Doppler frequencies than steady-state scattering due

to sea bottom and channel activity from relatively time-

invariant direct arrival. We further note that while both chan-

nels exhibit consistent activity along the columns represent-

ing the delay frequency, the rougher channel shows more

FIG. 1. (Color online) (a) Delay (s) vs time (t) channel representation. (b)

Delay (s) vs Doppler (Xt) channel representation. (c) 2-D frequency channel

representation: Delay frequency (Xs vs Doppler Xt).
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spreading out of the channel support with more high-energy

peaks (bright red spots) away from the zero-Doppler line.

E. Related work

Several estimation methods have been suggested in

underwater communications literature13,20,21 to estimate

these diverse slow and rapidly varying channel components.

For example, recently in Ref. 20, a mixed-norm optimization

technique has been proposed that trades-off accuracy of

detection of sparse and non-sparse components by choosing

the optimization parameter k 2 [0,1] at a suitable operating

point in the well-known Lasso metric22

uopt ¼ arg min
u

ð1� kÞkuk1 þ kkCu� yk2
2

h i
; (1)

where u denotes channel components to be estimated, C

denotes the estimation matrix, and y denotes the received

signal vector. However, such trade-offs typically lead to

compromise in accuracy over high-energy transients while

suppressing robust recovery of the diffused multipath delay

spread from the sea bottom, in agreement with the three-way

uncertainty relating time, frequency, and sparsity articulated

in Ref. 3.

Unrelated to these channel estimation efforts using sparse

sampling constraints, wireless communications, in general, has

seen advances in orthogonal frequency domain multiplexing

(OFDM) techniques23–26 that also sample the channel in fre-

quency domain. In OFDM, the channel is estimated by trans-

mitting a few pilots, akin to compressive transmission.

However, compressive transmission introduced in this work

differs from the conventional OFDM systems, as well as tradi-

tional compressive transmission, in three significant ways:

1. Different pilot structure

In pilot based channel estimation, signal transmission

would be done for a fixed number of pilots anchored at fixed

positions across the channel frequency spectrum. In terms of

shallow water acoustic channel, this means that OFDM

pilots sample Doppler frequencies either at the pre-specified

frequencies or according to some deterministic adaptive

schemes. The compressive transmission scheme adopted in

this work samples non-uniformly in a randomized (non-

deterministic) manner across the Doppler frequencies. Since

the column of zero-Doppler is the dominant channel compo-

nent, we fill up the samples of zero-Doppler that are not sam-

pled in the current time window with the estimates from the

previous window assuming them to be the noisy measure-

ments, yielding effectively a larger number of measurements

for the zero-Doppler compared to the higher Doppler col-

umns. A better estimate of channel is recovered with this

strategy as elaborately discussed and shown in Sec. IV A.

2. Channel-cognizant localization

We exploit the relative localization of diverse channel

components within the 2-D frequency representation, as dis-

cussed in detail in Secs. I C and I D, to design the sampling

scheme based on the underlying physical phenomena that

dominate the channel. As illustrated in Figs. 2 and 3,

depending on the channel conditions (e.g., calm or rough),

steady-state direct arrival and multipath scattering, highly

transient multipath and focusing events, and other scattering,

reflective, and interference phenomena manifest as moderate

to high-energy channel components that exhibit varying

sparsity of local support across the different Doppler col-

umns. To the best of our understanding, popular OFDM23

and popular compressive transmission methods5–7 are

completely agnostic of such physical phenomena.

3. Channel-adaptive energy efficiency

If the channel support itself is not highly time varying,

i.e., the contribution from high-energy components along

many Doppler columns does not rapidly fluctuate (even if

the individual channel elements may vary rapidly), then the

transmission scheme presented here can be adapted toward

higher energy savings. Specifically, we can transmit even

fewer dictionary atoms (equivalent to pilot reduction) saving

transmit energy and fill-up the not-sensed or not-transmitted

FIG. 2. (Color online) 2-D Fourier transform of a calm channel. Colorbar is

linear.

FIG. 3. 2-D Fourier transform of a rough channel. Colorbar is linear.
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samples of the steady-state components with the immediate

prior time window’s estimates, yielding an effective non-

uniform measurements/sampling at different Doppler columns.

II. TECHNICAL APPROACH

A channel delay spread (�30 ms long) of underwater

acoustic channel estimated from field data collected at a depth

of 15 m depth and 200 m range in the SPACE08 experiment27

is shown in Fig. 1 as a function of time. From Fig. 1, two dis-

tinct arrival regions are noted to be present in the channel

delay spread besides the dominant direct line-of-sight arrival.

These are a primary multipath resulting from one or few

reflections with sea surface,3,13,20 and a secondary multipath

resulting from several reflections between moving sea surface

and bottom. With a significant contribution in channel energy

and support, primary multipath delay taps are highly transient

in nature and also exhibit high-energy peaks occasionally, as

highlighted in Fig. 4, due to surface wave focusing1 and other

oceanographic events. The contribution of secondary multi-

path effects, while insignificant at the granularity of individ-

ual taps, cannot be ignored, and therefore cannot be

suppressed at large. Hence, any transmitted signaling scheme

needs to consider all three types of multipath effects (primary

multipath, secondary multipath, and direct line-of-sight

arrival), albeit in different ways.

Since the purpose of this work is to highlight how energy

efficient compressive transmission can be harnessed in channel

estimation, we employed the SPACE08 experimental data as a

case study to demonstrate the key ideas of the paper. In addi-

tion, we have added more context and results with channels

simulated by the well-know channel simulator18,19 in Secs. I C

and V B. This channel simulator has been proposed recently

and is unrelated to the channel estimates of the SPACE08

experiment. This work does not make any comprehensive

claim and, hence, does not require extensive validation on the

utility of any channel or channel model. Also, the sparsity

assumption for the channel support, while not universally true,

is well documented to occur frequently. This provides support

to the value added by this work.

III. DICTIONARY DESIGN AND POST-PROCESSING OF
RECEIVED SIGNAL

In this section, we present transmitted signal dictionary

design previously proposed in Refs. 8–10 and required

for this work. Let us consider the dictionary elements (or

basis functions) as complex exponential input signal x½i; k�
¼ ej2pik=K at time instant i¼ 0,1,…,L� 1 and delay frequen-

cies xd¼ 0,2p/K,…,2pk/K,…,2p(K� 1)/K with k¼ 0,1,…,

K� 1 across K parallel sub-channels. Also, we consider

Doppler frequencies xD¼ 0,2p/L,…,2pl/L,…,2p(L� 1)/L
with l¼ 0,1,…,L� 1. Let the channel impulse response be

h[i,n] at time instant i and channel delay tap n¼ 0,1,…,

K� 1. The following signal is obtained on transmission of

the signal x[i,k] over the channel

y i;k½ � ¼
XK�1

n¼0

h i;n½ �x i� n;k½ �

¼
XK�1

n¼0

h i;n½ �ej2pði�nÞk=K ¼ ej2pik=K
XK�1

n¼0

h i;n½ �e�j2pnk=K:

(2)

On multiplication with e�j2pnk=K on both sides of Eq.

(2), we obtain

y i; k½ �e�j2pik=K ¼
XK�1

n¼0

h i; n½ �e�j2pnk=K: (3)

On computing the one-dimensional Fourier transform

along the time variable i in Eq. (3) leads to

U l; k½ � ¼
XL�1

i¼0

y i; k½ �e�j2pik=Ke�j2pil=L (4)

¼
XL�1

i¼0

XK�1

n¼0

h i; n½ �e�j2pnk=Ke�j2pil=L: (5)

This is to note that Eq. (5) represents the 2-D Fourier

transform of the channel impulse response h[i,k] and, hence,

can be rewritten in the matrix form as

U ¼ FH; (6)

where U is the matrix representation of U[l,k] with dimen-

sion L�K. F denotes the 2-D Fourier transform operator

and H of size L�K is the matrix representation of the chan-

nel impulse response h[i,n]. From Eq. (6), it is clear that the

post-processed received signal U corresponds to the 2-D

Fourier transform of the channel. Figure 5 represents the 2-D

FIG. 4. (Color online) Delay spread (y
axis) plotted at different time instants (x
axis). Color intensity at any point repre-

sents delay tap magnitude. Colorbar is

linear.
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Fourier transform of the channel shown in Fig. 4. Note that

the Doppler frequencies are shown on the x axis in Fig. 5 or

the rows of U and delay frequencies are along the y axis in

Fig. 5 or columns of U.

From Eq. (6), we observe that, in the noise free scenario,

the channel can be recovered by computing the 2-D inverse

Fourier transform of the post-processed received signal U.

Thus, the proposed dictionary design transmission and post-

processing of the received signal has transformed the prob-

lem of channel estimation in the time-domain to recovery of

channel from the Fourier domain.

Interestingly, this framework is similar to k-space based

image reconstruction in magnetic resonance imaging (MRI)

where the CS approach is extensively used.28,29 Motivated

with this, we used CS and modified-CS based approaches

with prior information in the above framework for underwa-

ter channel estimation in Ref. 10. However, energy efficient

transmission was not considered in Ref. 10, which is the

focus of the current work and is described in Sec. IV.

IV. ENERGY EFFICIENT DICTIONARY
TRANSMISSION—PARTIAL TRANSMISSION OF
DICTIONARY ELEMENTS

This section presents energy efficient partial transmis-

sion that builds on the channel estimation framework intro-

duced in Ref. 10. From an energy efficiency perspective,

higher frequency transients typically occupy less energy

than the direct arrival U½0; k�K�1
k¼0 and, therefore, the input sig-

nal dictionary can be designed to detect more activity around

the direct arrival and primary multipath region, with partial

sampling along the secondary multipath region. The trade-

off between energy efficiency and performance will be

assessed by the relative performance margins of the sam-

pling ratios chosen.

Compressive transmission and sampling ratio:
Compressively transmitting the data for the purpose of channel

estimation in this study is equivalent to transmitting the

designed dictionary atoms over a few delay subcolumns.

Consider Eq. (5) where K possible delay frequencies xd¼ 0,2p/

K,…,2p(K� 1)/K based input dictionary elements of complex

exponential x½i; k� ¼ ej2pik=K are required to be transmitted

across K parallel sub-channels. Let us assume that only Sr% (Sr

represents sampling ratio in percentage) of dictionary elements

(or basis functions) are transmitted, i.e., K0 sub-channels are

selected randomly, where K0 ¼ bK � Sr=100c. In other words,

if X¼ {0,1,…,K� 1} is the set of indices of all delay frequen-

cies, it is assumed that Xs is a subset of these indices, i.e., the

set of indices of randomly selected sub-channels with Xs � X,

where jXj ¼ K; jXsj ¼ K0; and j�j denotes the cardinality of

the set. In terms of matrix representation, a sampling ratio of

Sr% implies that Sr% of rows of channel U shown in Fig. 5 are

fully transmitted to the receiver.

Channel estimation: On carrying out post-processing

similar to Eq. (5), we can rewrite Eq. (6) for energy efficient

transmission as

Usub ¼ <FH; (7)

where < is the operator denoting the restriction operator on

FH and is an equivalent representation of transmitting fewer

dictionary atoms or exponential signals. Hence, Usub in Eq.

(7) can be represented in terms of U in Eq. (5) with the fol-

lowing relation:

Usub ¼ OðUÞ; (8)

where O is the operator that transfers the post-processed sig-

nal U[l,k] only at delay frequencies 2pk=K ¼ 2pks=K and

transfers nothing at delay frequencies 2pk=K 6¼ 2pks=K,

where ks 2 Xs. In matrix form, the above relation can be

written as

Usub ¼ <U; (9)

where < is an operator that represents selection of fewer col-

umns from the matrix U. Usub has dimension L� K0, where

K0 � K and is the post-processed received signal when input

is transmitted across selected sub-channels only.

The received signal in a noisy channel is represented by

Usub ¼ <Uþ N; (10)

where N is the complex white Gaussian noise matrix with

dimension L� K0. The post-processed received signal U can

be estimated from the observed Usub by solving the follow-

ing LASSO (least absolute shrinkage and selection opera-

tor)22 optimization problem:

~U ¼ arg min
U

kUsub �<Uk2
F subject to kUk1 � s;

(11)

where s is the measure of sparsity of U. Here, jj�jj2F repre-

sents the square of the Frobenius norm and is equal to the

sum of squares of entries of the matrix, and jj�jj1 represents

the l1-norm given by the sum of absolute values. From Fig.

5, it is noted that the zero-Doppler frequency or the center

column of U corresponds to the invariant or the most domi-

nant steady component of the channel and, hence, contains
FIG. 5. (Color online) 2-D Fourier transform of the channel shown in Fig. 4.

Colorbar is linear.
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most of the energy. The steady-state components can also

include slowly varying multipath scattering, which will

occupy the low-Doppler frequencies around 61–1.5 Hz. On

the other hand, higher Doppler frequencies contain relatively

less energy and are sparser than the zero-Doppler frequency

component. Since the low-Doppler frequency components

are the most dominant components, they may lead to a better

estimate of U if known a priori. From Eqs. (3) and (4), we

observe that data are received for some of the components of

zero-Doppler frequency, particularly, U[0,k] where k 2 Xs.

On the other hand, data are not received for k 62 Xs at the

receiver with the compressive transmission, i.e., U[0, k] with

k 62 Xs is not received. Assuming comparatively less change

in the low-Doppler frequency component from one time

window to another, we consider the prior window estimate

of the unknown (not measured) components U[0,k] with

k 62 Xs as the current window’s noisy measurements, i.e.,

Uj 0; k½ �k 62Xs
¼ Uj�1 0; k½ �k 62Xs

þ g; (12)

where Uj[l,k] and Uj–1[l,k] are the jth and (j� 1)st window

estimates of the post-processed received signal, respectively,

and g is the noise that represents change in U½0; k�k 62Xs

between two consecutive windows. With the above formula-

tion of Eq. (12), we have samples of zero (or low) Doppler

at all delay frequencies, while we have measured data for

other Doppler frequencies (l 6¼ 0) at only sampled/transmit-

ted delay frequencies belonging to Xs, i.e., we have received

U½l; k�l6¼0;k2Xs
in the post-processed received signal for the

current observation window only.

Instead of directly translating classic range rate and path

length fluctuations to specific Doppler subbands, our motiva-

tion is to broadly separate the channel into mutually exclu-

sive supports, T and Tc (refer to Fig. 5). Each Doppler

frequency column consists of all delay frequencies k 2 Xs in

the 2-D channel representation corresponding to the particu-

lar Doppler frequency. T represents the low-Doppler col-

umns that capture the steady-state/slowly varying

components of the channel, which do not follow a sparse dis-

tribution, and Tc represents the transient channel compo-

nents, which do follow a sparse support. This implies that

the zero- (or low-) Doppler (center columns of U), corre-

sponding to the non-sparse support T, should be fully mea-

sured, i.e., no partial sampling should be done. However, we

perform compressive measurements, i.e., less than 100%

sampling of the channel. Thus, in order to capture all data

points of zero-Doppler (support T), we fill-up the non-

measured data points of the zero-Doppler in the current win-

dow with the estimates of the previous window because

these are slow varying data points across time windows.

This leads to an effective 100% sampling of zero-Doppler

(although noisy) and sampling of fewer data points along

Doppler frequency columns corresponding to the sparse sup-

port Tc. Each channel estimate with this non-uniform sam-

pling scheme [full (effective) sampling at low-Doppler

columns and partial sampling at higher Doppler columns] is

updated in every observation window, with j being the win-

dow index, as shown in Eq. (10). For notational simplicity,

we henceforth drop the window index subscript j since the

channel would be estimated for every window in a similar

fashion.

To summarize mathematically, it is observed from

Fig. 5 that U is not sparse on its full support but only on

the support Tc. U is observed to be dense on the support T.

Hence, it is more appropriate to impose sparsity only on

the support Tc instead of imposing it on the full support of

U. Based on this, the optimization problem of Eq. (11) is

reformulated as

~U ¼ arg min
U

kUsub �<Uk2
F subject to kUTck1 � s;

(13)

where UTc refers to the components of U belonging to sup-

port Tc. The above formulation is also known as modified-

CS.30 Equation (13) can be written in the vectorized form as

~u ¼ arg min
u

kusub �<vuk2
2 subject to kuTck1 � s;

(14)

where u and usub are the vectorized forms of U and Usub,

respectively, and the operator <v carries out the sampling in

the vectorized form.

Next, we provide an explanation for solving Eq. (14).

Note that kuTck1 ¼ kWuk1, where W is the diagonal matrix

with diagonal entries given by

Wði; iÞ ¼ 1 if i 2 Tc;
0 otherwise:

�
(15)

Hence, Eq. (14) can be written as

~u ¼ arg min
u

kusub �<vuk2
2 subject to kWuk1 � s:

(16)

Now, let us consider v¼Wu or u ¼W�1v. This results

in the following optimization problem

~v ¼ arg min
v

kusub �<vW�1vk2
2 subject to kvk1 � s:

(17)

Since W is a diagonal matrix, its inverse can be com-

puted by simply computing the inverse of its diagonal ele-

ments. However, W is singular because some of its diagonal

elements are zero. Hence, we modify the diagonal entries of

W to make it invertible as shown by

Wði; iÞ ¼ 1 if i 2 Tc;
� otherwise;

�
(18)

where � is a small value close to zero that restricts the ele-

ments in W–1 from reaching infinity.

Equation (17) can be solved using any LASSO solver.

Here, it is solved using MATLAB solver spgl1.31,32 ~u is esti-

mated as ~u ¼W�1~v after solving Eq. (17). All the steps for

solving Eq. (14) are provided in Algorithm 1.
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A. Strategies to reuse estimates of zero-Doppler
channel component

As discussed in Sec. IV, zero-Doppler denotes the

steady-state component carrying higher energy data samples.

Hence, all the data points of zero-Doppler are important to

be sampled (or be known or received at the receiver) from

the point of view of quality channel estimation. However, at

a sampling ratio of Sr%, only Sr% of rows of channel matrix

U (Fig. 5) are being transmitted and, hence, only Sr% data

points of the zero-Doppler (center column of channel matrix

U) are measured in the current time window. Since data

points of zero-Doppler are important, samples of zero-

Doppler that are not measured in the current window are

filled up using the previous window’s estimates as specified

in Eq. (12), considering them as the noisy measurements of

the present window, i.e., we re-use the estimates of zero-

Doppler data points of previous window as the noisy sensed

data in the current window at the receiver. However, this is

only one of the possible methods to handle not-measured

zero-Doppler data points. In this subsection, we present other

possibilities or methods to fill zero-Doppler data points

(which are not measured in the current window) for channel

estimation. Comparison results of these methods will be pre-

sented in Sec. V to validate the appropriateness of the chosen

method discussed in Sec. III. We present four possible meth-

ods that can be used on zero-Doppler samples:

(1) Method 1: The first method is the conventional method

of CS where data points that are not measured/sensed in

the CS scenario are considered to be zero and will be

filled up only after the CS based reconstruction is

applied, i.e., data points of zero-Doppler that are not

measured in the current window are not filled-up with

any a priori estimate. In other words, assume that

Uj½0; k�k 62Xs
¼ 0 is received at the receiver, where j is the

index of the current window.

(2) Method 2: Assuming comparatively less change in the

zero-Doppler frequency component from one time win-

dow to another, the prior window’s estimates of all the

data points of zero-Doppler are used as the noisy mea-

surements of zero-Doppler in the current window, i.e.,

Uj½0; k� ¼ Uj�1½0; k� þ g; 8k 2 ½0;K � 1�, where g is the

noise in zero-Doppler samples.

(3) Method 3: The prior window’s estimates of only the

unknown data points of zero-Doppler U[0, k] (compo-

nents not measured in the current window) with k 62 Xs

are considered as the current window’s noisy

measurements as specified in Eq. (12). In this method,

we fixed Xs for all the windows before the experiments.

This implies that the compressive transmission is carried

out over some fixed delay subcolumns (k 2 Xs) in all the

successive time windows.

(4) Method 4: This is same as Method 3 except that Eq. (12)

is used with variable Xs to fill up non-measured data

points of zero-Doppler in successive time windows. This

is the most practical case because it implies that the

delay subcolumn channels are chosen randomly for com-

pressive transmission of dictionary elements in different

time windows for channel estimation.

B. Energy savings in transmitted signal from partial
sampling

This is to note that if we consider energy required in the

process of signal transmission for channel estimation, send-

ing a few frequency components (via partial sampling along

higher Doppler frequencies) provides energy saving in the

process. For example, if a signal is transmitted at Sr% sam-

pling ratio (or at Sr% sub-channels), it directly implies that

(100� Sr)% energy is saved in this process of signal trans-

mission as compared to 100% sampling ratio, where the sig-

nal is transmitted at all sub-channels or when full dictionary

is transmitted.

Thus, the metric for measuring energy savings is

directly proportional to the sampling ratio, which has been

used widely in the bio-medical signal processing commu-

nity.5–7 In applications related to data communication and

channel capacity,33,34 bits-per-joule is a relevant metric. On

the other hand, this work is focused on channel estimation,

where “transmission energy” savings simply refers to saving

energy in the transmission of training symbols by sending

far fewer symbols than in the traditional non-sparse dictio-

naries. The relevant metric in efficiency is, therefore, the

sampling ratio and, hence, in all the above results, compres-

sive transmission implies energy efficient transmission.

Following this point, full dictionary transmission or

100% sampling ratio implies no energy saving in the process

of training symbol transmission. Hence, 100% sampling

ratio is not of importance from the energy saving point of

view, whereas a sampling ratio of Sr% (Sr< 100) implies

(100 - Sr)% energy saving with slightly less reconstruction

accuracy (refer to Figs. 7 and 8) compared to full dictionary

transmission. Thus, there is a trade-off between channel

reconstruction accuracy and energy saving. Better recon-

struction accuracy implies less energy saving. Thus, one

may go for full dictionary transmission with best channel

reconstruction accuracy and no saving in energy or partial

dictionary transmission with slightly less reconstruction

accuracy and saving in energy.

V. RESULTS

Choice of the observation window length and sampling

ratio localizes different channel activity in time and sparsity,

i.e., captures different components of steady-state vs tran-

sient channel activity. Usually the high-energy channel

ALGORITHM 1: Algorithm to estimate channel using the proposed

formulation.

Input: Sampled post-processed received signal uTc and operator ð<v)

Output: Full signal (~u)

	 Step 1: Form weight matrix W as explained in Eq. (18), and compute its

inverse.

	 Step 2: Solve:

~v ¼ minv kusub �<vW�1vk2
2; such that kvk1 � s

using any solver for LASSO.

	 Step 3: Compute ~u using ~u ¼W�1~v and obtain its matrix form ~U.

	 Step 4: Obtain estimated channel from ~U using Eq. (6), i.e., ~H ¼ F
�1 ~U.

2962 J. Acoust. Soc. Am. 145 (5), May 2019 Ansari et al.



transients, being ephemeral, can only be localized using

shorter observation windows, whereas the steady-state com-

ponents are best captured in longer observation windows.

Usually, for calm to moderate channels, high-energy tran-

sient activity is rare and unpredictable, and therefore, mani-

fests within the very sparse support of the channel in the

high-Doppler columns. On the other hand, rough channels

that exhibit significant and frequent rapid fluctuations exhibit

less sparse support in the high-Doppler columns.

Accordingly, we expect better performance and, hence, more

transmitted signal energy savings using compressive trans-

mission for calm to moderate channels over rough or highly

active channels. Accordingly, we provide results and rele-

vant discussion over two independent sets of numerical

experiments:

(i) Numerical results based on one real-world channel

estimated from experimental field data conducted

from October 18 to October 27 in 2008 (SPACE08

experiment).27 The channel based on SPACE08 data

is a moderately calm channel, hence, all results for

this channel follow non-sparse channel activity at

lower Doppler and sparse activity at high Doppler,

and

(ii) numerical results based on a well-known channel sim-

ulator18,19 to create a calm/moderate channel and a

rough channel and show how the results change based

on the channel conditions.

In each case, we discuss our numerical results based on

trade-off between sparsity, observation window length, and

choice of sampling ratio. We also provide performance stud-

ies of our method across channel simulations that vary the

multipath, spreading factor, and bandwidth.

A. Numerical results based on experimental data

This section presents numerical results based on one

experimental channel estimated from experimental field data

conducted from October 18 to October 27 in 2008.27 Mixed-

norm optimization technique20 is employed to sample the

non-stationary channel at several points in time, spaced

100 ms apart (approximately one channel length). Figure 6

shows the channel impulse response estimated, using Ref. 20

from the above mentioned experimental data, as a function

of time for 30 ms duration collected over moderate to rough

sea conditions. From Fig. 6, it is noted that despite similar

regions of activity, there is a noticeable distinction between

the two temporal snapshots. These channel values are used

as ground truth in the proposed formulation as discussed in

Secs. III and IV. Thus, the channel considered in this section

is not a simulated product of acoustic propagation models,

but is the true (optimized for best normalized prediction

error) estimate of a real channel over which the SPACE08

experiment was conducted.

The experiment of underwater acoustic channel estima-

tion is performed with fewer randomly selected dictionary

signal transmissions with received signal-to-noise ratios

(SNR) of 10 dB and 5 dB (received over noisy channel).

Accuracy of the proposed method of channel reconstruction

is quantified in terms of normalized mean square error

(NMSE) and is given by

NMSE in dBð Þ ¼ 10 log10

XL�1

i¼0

XK�1

k¼0

jH i; kð Þ � Ĥ i; kð Þj

XL�1

i¼0

XK�1

k¼0

jH i; kð Þj2

0
BBBBB@

1
CCCCCA
;

(19)

where H and Ĥ represent the channel ground truth and

reconstructed channel, respectively. The SNR of the noisy

channel is given by the following relation:

SNR of noisy channel¼ 10 log10

1

LK

XL�1

i¼0

XK�1

k¼0

jh i;kð Þj2

r2
n

0
BB@

1
CCA
;

(20)

where r2
n denotes the variance of noise present in the noisy

channel.

Channel reconstruction results in terms of NMSE (in

dB) are shown in Figs. 7 and 8 for noisy channel SNRs of

10 dB and 5 dB, respectively. The experiment is performed

with sampling ratio ranging from 40% to 100% and with

window length ranging from 0.92 ms (milliseconds) to

23.04 ms. As discussed in Sec. IV, we use the previous win-

dow estimate of zero-Doppler components of post-processed

received signal (i.e., U½0; k�k 62Xs
) to estimate the channel in

the present window. Hence, the channel is estimated in 100

continuous non-overlapping windows and results are aver-

aged over those 100 windows. Also, 50 Monte Carlo

FIG. 6. Representative channel estimates at two different time instants over

30 ms delay using Ref. 20 as kernel solver.
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simulations of the above complete experiment are performed

and results are shown in Figs. 7 and 8.

From Figs. 7 and 8, we observe that 100% sampling

ratio, which represents the non-compressed dictionary or the

full dictionary transmission, dominates the NMSE perfor-

mance. Also, the performance decreases as the sampling

ratio decreases. This is to be expected as ideally, 100% sam-

pling across the full channel support, i.e., T [ Tc should cap-

ture the full channel activity. Moreover, as the sampling

ratio decreases, we rely more on the previous window esti-

mate for zero-Doppler frequency [refer to Eq. (12)], which is

the most dominant component of the channel. Due to time-

varying nature of the channel, this decreases the channel

reconstruction accuracy and, hence, a corresponding increase

in NMSE estimation error. However, despite achieving a

lower estimation error, 100% sampling also implies no com-

pression and, therefore, 0% energy savings in the transmitted

signal. Hence, the goal is to study the trade-off between esti-

mation error and sampling ratio, which is proportional to the

transmitted signal compression, and thus, transmitted energy

savings.

We note that around 3 ms the lowest estimation error is

achieved for the 10 dB SNR case (Fig. 7) for each sampling

ratio, with a total difference of �5.5 dB (�19 dB for 100%

sampling to ��13.5 dB for 40% sampling) across a potential

savings of 60% transmitted signal compression and corre-

sponding energy savings. In particular, the performances

between 80% and 100% sampling ratios are comparable

(<2 dB drop in NMSE estimation error). We attribute this

potential 20%-2 dB compression-performance trade-off to

the moderately calm nature of the SPACE08 channel in

question. The main channel activity is dominated by the

steady-state channel components captured in the low-

Doppler columns, and any transient activity manifest along

the high-Doppler columns, which exhibit an extremely

sparse support. Results for the five SNR case show similar

characteristics with the optimal window length attained at a

higher value, �4.61 ms, to compensate for the increase in

ambient noise.

As the window length increases, we localize the channel

primarily along its steady-state components and, therefore, lose

accuracy of estimation along the high-Doppler columns.

Hence, we observe a consistent fall in the NMSE estimation

error across all sampling ratios for observation window lengths

>3 ms. Thus, we conclude that robust channel estimation under

energy efficient transmitted dictionaries is best achieved when

the transmitted codebook and the observation window length
sufficiently capture the underlying support of the channel

across both transient and steady-state components.

So far, we have always estimated the channel with full

(100%) sampling along the zero-Doppler column. We now

examine the NMSE performance when we allow partial sam-

pling along the zero-Doppler column, which captures most

of the channel steady-state activity. Figure 10 shows the

channel reconstruction results in terms of NMSE (in dB)

with four methods of partially sampling the zero-Doppler

column. We estimate the channel with 50% compressive

transmission at 5 dB SNR and a window length of 3.07 ms.

This implies that only half of the rows of channel matrix U

shown in Fig. 5 are transmitted and, hence, only half of the

data points of the zero-Doppler component (center column

in Fig. 5) are measured or received at the receiver. We per-

form the experiment for 50 windows. From Fig. 5, we note

that method 1 fails to reconstruct the channel because it does

not fill the non-measured samples (50% samples) of the

zero-Doppler component (k 62 Xs) with any a priori (noisy)

estimate. Since zero-Doppler components are the most domi-

nant energy components, they are required to be sampled

explicitly. Hence, this method fails to capture the channel

steady-state and, therefore, performs poorly.

In method 2, all the zero-Doppler estimates of one win-

dow are used in successive windows. This method is able to

reconstruct the channel with good accuracy up to a certain

number of successive windows. Since the channel is time

varying, channel reconstruction accuracy drops exponen-

tially as we move farther away from the window whose esti-

mates of zero-Doppler are used in subsequent windows. To

show the variation of channel with time, we show the magni-

tude profile of zero-Doppler components of the post-

processed received signal U in Fig. 9 over 250 successive

FIG. 7. NMSE for channel estimates using Ref. 17 with noisy channel

SNR¼ 10 dB with modified CS recovery framework and transmission of

dictionary elements over fewer frequency sub-channels; support T corre-

sponds to the zero-Doppler component.

FIG. 8. NMSE for channel estimates using Ref. 17with noisy channel

SNR¼ 5 dB with modified CS and transmission of dictionary elements over

fewer frequency sub-channels; support T corresponds to the zero-Doppler

component.
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windows. A window length of 10.75 ms is considered for

Fig. 9. We show the magnitude profile of those data points

of the zero-Doppler component that are having maximum

and minimum variance over 250 windows in Figs. 9(a) and

9(b), respectively. Both Figs. 9(a) and 9(b) show that there is

sufficient variability in the zero-Doppler component across

different windows that causes method 2 to perform worse at

higher window numbers.

Method 3 performs better than method 2 because, unlike

method 2, all zero-Doppler components are not used from

the previous window’s estimate. Rather, 50% of the zero-

Doppler column is directly sampled within the current win-

dow. The remaining zero-Doppler components are taken

from the previous window’s estimate and considered to be

the noisy measurements in this window. In this method, the

50% sample positions of the zero-Doppler component that

are measured are considered to be fixed across windows.

Since the channel steady-state components are also slowly

varying with time, as evident from Fig. 9, the performance

of this method deteriorates similarly to method 2 as the win-

dow length increases.

Method 4 is by far the best performer and therefore, the

one proposed in this work. The 50% measured samples of

the zero-Doppler component are used along with the other

50% samples of the prior window’s estimate. Also, the 50%

sample positions are variable in successive time windows

unlike method 3. This method reconstructs/estimates the

channel with fairly consistent accuracy at ��14 dB. Also,

as evident from Fig. 10, the performance of this method

does not decline as the window number increases. This is

primarily due to variable, rather than fixed sampling of the

steady-state channel components along the zero-Doppler col-

umn, which captures any slow variations from one window

to the next. In summary, this method is a good implement-

able choice in practice and, hence, can be used for energy

efficient channel reconstruction when fewer dictionary ele-

ments are transmitted.

B. Results based on simulated channel

We now present similar results based on the two chan-

nels generated using the channel simulator, as discussed in

Sec. I C.

We note that for the rougher channel, the performance

degrades in Fig. 11 as we increase the observation window

length, whereas for the calmer channel, the performance in

Fig. 12 does not degrade significantly with the increasing

observation window length. This is to be expected because

the rougher channel, by design, has a significantly higher

amount of transient activity that is poorly captured by larger

observation windows. On the other hand, the calmer channel

has mostly steady-state activity with few transients.

Therefore, its performance does not degrade significantly

when the observation window is increased. We also note

that, for both the channels, the performance increases with

including more Doppler columns with full measurements,

e.g., compare Figs. 11(a) and 11(b), and Figs. 12(a) and

12(b). This is expected because more measurements along

high-activity channel components will lead to less channel

estimation errors.

Further, we note that while for both channels 100%

sampling achieves the best estimation error, this perfor-

mance gap (between 100% and 40% partial sampling) less-

ens with an increasing observation window length for both

channels, with best performance achieved where the window

length localizes enough steady-state components without

sacrificing too much transient activity. However, as dis-

cussed above, the rough channel has more transient activity

in the high-Doppler columns. This provides a mixture of

high-energy components, both steady-state and transient, for

the rough channel against lower-energy channel activity,

which is mostly due to transient multipath reflections from

FIG. 9. (a) Magnitude profile of one data point of the zero-Doppler compo-

nent measured in successive windows and having maximum variation. (b)

Magnitude profile of one data point of zero-Doppler component measured in

successive windows and having minimum variation.

FIG. 10. NMSE for channel estimates with various methods at noisy chan-

nel SNR of 5 dB and transmission of dictionary elements over 50% fre-

quency sub-channels at window length of 3.07 ms.

J. Acoust. Soc. Am. 145 (5), May 2019 Ansari et al. 2965



multiple bounces between the ocean surface and the sea

floor. On the other hand, the calmer channel has primarily

high-energy channel activity that is steady-state with occa-

sional transient multipath activity that spills over to the

61 Hz low-Doppler columns. In other words, the calmer

channel exhibits little or no activity outside the low-Doppler

activity regions, in contrast to the rough channel. This

implies that sampling the calm channel using compressive

sampling ratios will not necessarily lead to noise suppression

and, hence, gains in performance or energy savings. On the

other hand, for the rough channel, the noise suppression

capability of compressive sampling captures the outlier

high-Doppler transients almost leading to better overall

results for the calmer channel compared to the rougher

channel.

In summary, for rough channels with high-energy tran-

sient activity, full measurements at smaller observation win-

dows (100% sampling across all Doppler columns) will be

the best albeit energy-expensive strategy. However for

calmer channels, i.e., with more sparse support in the high-

Doppler columns, adopting compressive sampling at higher

Doppler columns and a longer observation window will sig-

nificantly lower the energy requirement of transmitted sig-

nals without significant decrease in estimation error.

Therefore, as the channel conditions change from calm to

rough or vice versa, the compressive sampling ratio and

observation window can be adapted to achieve the best

trade-off between transmission energy efficiency and chan-

nel estimation error.

The Appendix provides details of the simulated chan-

nels used to generate the results in Figs. 11 and 12. Figures

13–15 provide performance comparisons between the differ-

ent sampling ratios as a function of scattering parameters

such as the spreading factor k, intrapath variabilty Sp, as well

as the bandwidth B. These parameters are explained in detail

in Ref. 38 and listed in the Appendix. We observe that while

full-energy (100% sampling ratio) transmission achieves the

lowest NMSE error in each case, the gap in performance

between different sampling ratios (and hence different rates

of transmission savings) is less for the rough channel than

for the calm channel. This is consistent with our earlier

observations of error performance as a function of the obser-

vation window length in Figs. 12 and 13, and is explained by

the fact that compressive transmission is most effective for

recovering few high-energy components against a noisy

background, a scenario in which the rough channel manifests

much more than the calm channel. However, we observe a

similar non-monotonic pattern in both channels where the

performance gap between full-energy and partial-energy

transmission fluctuates as a function of k, Sp, and B. Our

interpretation of this fluctuating behavior is that with

increased scattering there are quasi-cyclic fluctuations in

FIG. 11. Performance evaluation of calm channel (low transient channel

activity) with SNR fixed at 10 dB and (a) full measurements considered

along the lowest five Doppler frequencies (�1 Hz, þ1 Hz), (b) full measure-

ments considered along the lowest Doppler frequency 0 Hz.

FIG. 12. Performance evaluation of calm channel (low transient channel

activity) with SNR fixed at 10 dB and (a) full measurements considered

along the lowest five Doppler frequencies (�1 Hz, þ1 Hz), (b) full measure-

ments considered along the lowest Doppler frequency 0 Hz.
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regions of constructive and destructive interference. This

leads to fluctuations in the number of high-energy channel

delay taps and, hence, in the sparseness of the overall

channel support, sparseness being inversely proportional

to the degree of constructive interference. This leads to the

full-energy transmission (100% sampling) outperforming

the partial energy transmissions at a higher margin when-

ever the sparseness decreases due to more constructive

interference between the multipath and intrapath scatter-

ing events. Figure 16 shows the performance analysis of

the rough channel as a function of increasing multipath

arrivals P.

VI. CONCLUDING REMARKS

In this work, we aim to harness the power of compres-

sive sampling to achieve significant savings in the number

of training symbols needed to learn the sparse time-varying

shallow water acoustic channel and, therefore, attain signifi-

cant savings in transmission energy. This is achieved by

transmitting fewer dictionary signals via compressive trans-

mission, but employing full measurements of zero-Doppler

carrying steady-state and high-energy components. The CS

based framework leads to under-determined set of linear

equations that would yield infinite solutions in general.

Relevant assumptions, such as sparsity, allow one to

retrieve a unique solution and, hence, are widely deployed

along with mixed-norm solutions in CS based reconstruc-

tion. Thus, the key idea is that we need to send significantly

fewer training symbols to estimate the sparse channel if we

use CS rather than traditional non-sparse techniques. Thus,

this work does not dismiss non-sparse techniques, but har-

nesses the power of compressive sampling techniques

where the channel is indeed sparse and transmission energy

savings can be gained. We note that sparse recovery techni-

ques will not perform as well if the channel itself is not

sparse. The scope of this work is for shallow water acoustic

channels where the channel is sparse, and offers a mixture

of steady-state and transient high-energy channel activity

where applying CS for transmitted signal energy savings

makes sense. We have shown through simulations and

experimental data cases where the shallow water acoustic

channel follows such meager support, particularly, along

the higher Doppler columns where the transient channel

phenomena are captured.

FIG. 13. NMSE vs bandwidth at window length of 30 at 10 dB SNR with

five fixed Doppler for (a) calm channel and (b) rough channel.

FIG. 14. NMSE vs k (spreading factor) at window length of 30 at 10 dB

SNR with five fixed Doppler for (a) calm channel and (b) rough channel.
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A. Key contributions

The theoretical contribution of this work is energy effi-

cient real-time shallow water channel estimation using com-

pressed transmission signaling. This is a significant

contribution toward undersea signal processing techniques

due to its potential impact across diverse underwater applica-

tions. We iterate several benefits from our proposed method

below.

(i) Energy savings in transmitted signal for channel esti-

mation can enable longer battery life for underwater

communication systems, e.g., those mounted on

AUVs.

(ii) Energy efficiency in the transmitted signal leads to

lowered average energy of transmission in communi-

cation or surveillance systems. Low-energy channel

estimation allows covert or low-presence monitoring

of the ocean. For example, real-time channel knowl-

edge enables understanding of multipath effects,

which can provide crucial information regarding the

nature of reflectors in the ocean, natural or

anthropogenic. Besides military applications, low-

presence acoustic oceanic monitoring is also highly

desirable for keeping marine life safe from anthropo-

genic acoustic pollution of the ocean.

(iii) Energy efficient signal transmissions based on com-

pressive transmission, such as the method presented

in this work, also suppress ambient channel noise by

design. This is because sparse sensing techniques are

optimized toward locating the high-energy channel

components, which represent the high SNR parts of

the channel delay spread.

From a technical perspective our contribution toward

energy efficient transmission lies in harnessing 2-D fre-

quency localization with compressive transmission at the

transmitter and modified-compressive sensing (modified-CS)

with prior information at the receiver to exploit the sparse

structure of the rapidly fluctuating shallow water acoustic

channel in real time.

Specifically, frequency-selective transmitter dictionary

design proposed in Refs. 8–10 for shallow water acoustic

communications is exploited to disambiguate slowly varying

channel multipath phenomena against high-energy transi-

ents, e.g., from surface wave focusing events,1 as well as

other rapidly varying oceanic events such as constructive

interference between different multipath arrivals, specular

reflections from moving sea surface, among others. This dis-

ambiguation of diverse types of channel effects in a

frequency-selective transmission scheme allows design of

independent dictionaries that pursue high-accuracy estima-

tion of slow and fast channel multipath at different sampling

rates. The proposed method is distinct in conception and

structure from other frequency-selective transmission techni-

ques designed for underwater OFDM systems35,36 and other

compressing sampling techniques that use deterministic

Fourier sampling.37 We build upon a 2-D frequency domain

representation of the shallow water channel,8 and introduce

transmitter signal design in this domain that is cognizant of

underwater acoustic multipath phenomena. For high-

accuracy channel estimation, modified-CS with a prior

FIG. 15. NMSE vs Sp (number of intra-paths) at window length of 30 at

10 dB SNR with five fixed Doppler for (a) calm channel and (b) rough

channel.

FIG. 16. NMSE vs P at window length of 30 at 10 dB SNR with five fixed

Doppler for rough channel.
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information based approach is employed. This approach is

used for channel estimation in Ref. 10 also, but that work

did not consider energy efficient transmission.

B. Future work

In the future, we will explore codebook design along

with dictionary transmission where channel estimation and

data recovery will be performed simultaneously. Despite the

focus on shallow water acoustic channel estimation, the

emphasis of this work is energy efficient signal processing

and, therefore, may be generalizable beyond this target

application. For example, one may consider energy efficient

video communications where different components moving

at different time rates and exhibiting different energy levels

are transmitted using the non-uniform dictionary proposed in

this work.

Further, UWA (underwater acoustic) communication

systems requiring high power efficiency are also designed to

work under robust communication modulation such as multi-

ple frequency shift keying (MFSK) and frequency hopping

spread spectrum (FHSS), which may not require channel

estimation. However, channel estimation may itself be desir-

able to understand the ocean state at the time the communi-

cation happens, which is beyond the goal of high data-rate

communications. The scope of this work is those scenarios

where robust real-time channel estimation is in-itself a

desirable goal for which we are not proposing any new mod-

ulation scheme, but rather an energy efficient way of trans-

mitting the training signal that can robustly estimate and

learn the channel, although one can always improve perfor-

mance by using complex modulation schemes that can ride

as a higher layer of abstraction on the sampling scheme

used. As a future work, it will indeed be interesting to see

whether adapting sophisticated modulation schemes over the

non-uniform sampling gives a significant boost to the energy

efficiency of the overall transmitted signal.
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APPENDIX

Below is the list of parameters used to simulate calm

and rough underwater acoustic channels used in experiments

generated using,38 with the help of MATLAB code present at19

Parameters for “the calm” channel

h0¼ 75; [surface height (depth), m]

ht0¼ 50; (transmitter height, m]

hr0¼ 50; (receiver height, m)

d0¼ 1000; (channel distance, m)

k¼ 1.9; (spreading factor)

c¼ 1500; (speed of sound in water, m/s)

c2¼ 1200; [speed of sound in bottom, m/s (>1500 for hard,

<1500 for soft)]

cut¼ 5; (do not consider arrivals whose strength is below

that of direct arrival divided by cut)

fmin¼ 8.5e3; (minimum frequency, Hz)

B¼ 9e3; (bandwidth, Hz)

df¼ 25; (frequency resolution, Hz, f_vec¼fmin:df:fmax;)

dt¼ 50 e-3; (time resolution, s)

T_SS¼ 60; (coherence time of the small-scale variations, s)

Small-scale (S-S) parameters:

sig2s¼ 2; (variance of S-S surface variations)

sig2b¼ sig2s/2; (variance of S-S bottom variations)

B_delp¼ 5 e-4; [3-dB width of the power spectral density of

intra-path delays (assumed constant for all paths)]

Sp¼ 5; [number of intra-paths (assumed constant for all

paths)]

mu_p¼ .5/Sp; [mean of intra-path amplitudes (assumed con-

stant for all paths)]

nu_p¼ 1 e-6; [variance of intra-path amplitudes (assumed

constant for all paths)]

Large-scale (L-S) parameters:

T_tot¼ 3*T_SS; (total duration of the simulated signal, s)

t_tot_vec¼(0:dt:T_tot); Lt_tot¼length(t_tot_vec);

h_bnd¼[-10 10]; [range of surface height variation (L-S real-

izations are limited to hþh_band)]

ht_bnd¼[�5 5]; (range of transmitter height variation)

hr_bnd¼[�5 5]; (range of receiver height variation)

d_bnd¼[�20 20]; (range of channel distance variation)

sig_h¼ 1; (standard deviation of L-S variations of surface

height)

sig_ht¼ 1; (standard deviation of L-S variations of transmit-

ter height)

sig_hr¼ 1; (standard deviation of L-S variations of receiver

height)

sig_d¼ 1; (standard deviation of L-S variations of distance

height)

a_AR¼ .9; [AR parameter for generating L-S variations

(constant for variables h, ht, hr, d)]

Parameters for rough channel

h0¼ 75; [surface height (depth), m]

ht0¼ 50; (transmitter height, m)

hr0¼ 50; (receiver height, m)

d0¼ 1000; (channel distance, m)

k¼ 1.9; (spreading factor)

c¼ 1500; (speed of sound in water, m/s)

c2¼ 1200; [speed of sound in bottom, m/s (>1500 for hard,

<1500 for soft)]

cut¼ 200; (do not consider arrivals whose strength is below

that of direct arrival divided by cut)

fmin¼ 8.5e3; (minimum frequency, Hz)

B¼ 9e3; (bandwidth, Hz)

df¼ 25; (frequency resolution, Hz, f_vec¼fmin: df:fmax;)

dt¼ 50 e-3; (time resolution, s)

T_SS¼ 60; (coherence time of the small-scale variations, s)

S-S parameters:

sig2s¼ 10; (variance of S-S surface variations)

sig2b¼ sig2s/2; (variance of S-S bottom variations)

B_delp¼ 5 e-4; [3-dB width of the p.s.d. of intra-path delays

(assumed constant for all paths)]

Sp¼ 40; [number of intra-paths (assumed constant for all

paths)]
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mu_p¼ .5/Sp; (mean of intra-path amplitudes [assumed con-

stant for all paths)]

nu_p¼ 1 e-3; (variance of intra-path amplitudes [assumed

constant for all paths)]

L-S parameters:

T_tot¼ 3*T_SS; (total duration of the simulated signal, s)

t_tot_vec¼ (0:dt:T_tot); Lt_tot¼length(t_tot_vec);

h_bnd¼[�10 10]; [range of surface height variation (L-S

realizations are limited to hþh_band)]

ht_bnd¼[�5 5]; (range of transmitter height variation)

hr_bnd¼[�5 5]; (range of receiver height variation)

d_bnd¼[�20 20]; (range of channel distance variation)

sig_h¼ 1; (standard deviation of L-S variations of surface

height)

sig_ht¼ 1; (standard deviation of L-S variations of transmit-

ter height)

sig_hr¼ 1; (standard deviation of L-S variations of receiver

height)

sig_d¼ 1; (standard deviation of L-S variations of distance

height)

a_AR¼ .9; [AR parameter for generating L-S variations

(constant for variables h, ht, hr, d)]
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