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Abstract—This paper proposes estimation of underwater
acoustic channel in the delay-Doppler domain under dynamic
sea conditions. The sparsity of the channel in the delay-Doppler
domain is exploited via advanced compressive sensing (CS) tech-
nique to estimate the channel. The proposed use of CS with prior
information takes care of relatively dominant but stable slowly
time-varying channel component and the rapidly fluctuating high
energy transients. Simulation results are presented on prior
estimated channel of SPACE(S experiment, considered as ground
truth, for the validation of the theory presented.
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I. INTRODUCTION

Underwater acoustic channel has an unpredictable non-
stationary and time-varying response due to rapidly fluctuating
high energy transients caused by oceanic events such as
surface wave focusing [1]. Also, the transmitted signal is
received from multiple paths after it is reflected a number of
times from the sea bottom and the moving sea surface [2],
[3] leading to long time-varying delay spread, typically of
the order of 100-200 delay taps. High-energy transients along
with the long time-varying delay spread pose challenges in the
tracking of underwater acoustic channel in real-time.

Nevertheless, several attempts have been made to estimate
underwater acoustic channel. Methods for solving channel es-
timation problem include ray theory model [3], adaptive signal
processing methods based on least squares [4], and channel es-
timation using multiple input multiple output (MIMO) frame-
work [5]. Recently, sparse recovery methods are increasingly
being used for tracking shallow water acoustic channel in
medium ranges [6], [7], [8], [9], [10], [11] and are shown
to provide better estimation than least square methods.

A major challenge in underwater acoustic channel estima-
tion is high energy transient events that occur randomly. Since
these transients are sparse in nature, these are best captured
by sparse recovery methods. This establishes the utility of the
sparse recovery methods. However, direct application of sparse
sensing/recovery methods yield suboptimal results because
they are not able to extract small amplitude channel delay taps
that are typically steady and important often serving as a build-
up to high-energy transients. Also, the sparsity of channel
changes over time [6] that creates a challenge to the direct
application of sparse recovery based methods. Hence, there
is a need for a method that can detect steady component of
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channel as well as sparse and randomly occurring high energy
transients. Motivated with the above, we designed a transmit
dictionary in [10] and utilized it to estimate channel with
sparse recovery method using sparsity of the channel in the
2-D time domain.

Compressed sensing falls under the umbrella of sparse
recovery based methods where an under-determined system
of linear equations is solved using sparsity of the signal in
some domain as the prior knowledge. To the best of our
knowledge, no existing method in literature had used CS per
se for underwater acoustic channel estimation before the work
of [11], [12]. In [11], [12], transmit dictionary designed in
[10] is used for channel estimation in the compressive sensing
framework exploiting the sparsity of the channel in the 2-
D Fourier domain along with the knowledge of steady and
transient channel components. These works were inspired by
the CS based recovery in the Fourier domain in Magnetic
Resonance Imaging (MRI) reconstruction.

However, we note that the underwater channel is sparser
in the delay-Doppler domain as compared to the 2-D Fourier
domain. Additionally, the channel is dense and has high energy
in the lower Doppler frequencies, while it is sparse with
comparatively less energy in the higher Doppler frequencies
in the delay-Doppler domain. The current work is inspired by
the above observations and the success of CS in underwater
acoustic channel estimation in [11], [12]. This paper explores
CS based method in the delay-Doppler domain for channel
estimation. Further, variable density sampling has been pro-
posed to exploit the sparsity and energy information as noted
above.

The paper is organized in five sections. Motivation for using
delay-Doppler domain for channel estimation using CS is
presented in section-II. Proposed work is presented in section-
III. Experimental results based on the proposed method are
presented in section-IV and some conclusions are drawn in
section-V.

II. MOTIVATION FOR USING DELAY-DOPPLER

Figure-la shows the time domain representation of the
shallow water acoustic channel estimated via non-convex
mixed norm solver (NCMNS) algorithm [14] over experimen-
tal field data collected at 15 meters of depth from the sea
surface and with 200 meters distance between the receiver
and the transmitter under moderate to rough sea conditions



in SPACEO8 experiment [15]. Delay refers to the delay taps
(in milliseconds) constituting the channel impulse response at
any time instant represented by x-axis. Fig.1 shows the channel
impulse response in the time domain, 2-D Fourier domain, and
delay-Doppler domain.

From Fig.1, we note that the channel is sparser in the delay-
Doppler domain compared to the 2-D Fourier domain. To
validate the observation, a comparison of sorted magnitude
of coefficients of the channel in the 2-D Fourier domain and
delay-Doppler domain is presented in Fig. 2. The results have
been shown over a window length of 10.8 msecs. For better
visual clarity, a comparison of only 1000 largest coefficients
has been shown in this plot. We observe that coefficients of the
channel in the delay-Doppler decay more rapidly as compared
to those in the 2-D Fourier domain. From [16], this observation
indicates that the channel is sparser in the delay-Doppler.

Also, 98.5% of the total energy is occupied by 100 largest
coefficients in the delay-Doppler, whereas only 82.0% energy
is occupied by the same number of coefficients in the 2-D
Fourier domain. This further affirms the claim. Hence, it is
more appropriate to exploit the sparsity of the channel in the
delay-Doppler domain as compared to the 2-D Fourier domain
[17] and is the goal of this work. Particularly, we extend the
formulation of [11], [12] to delay-Doppler domain and exploit
the channel knowledge of steady component to implement
variable sampling ratio CS with apriori information in the
delay-Doppler domain for the channel estimation.

III. PROPOSED WORK

We extend the system model proposed by us earlier in [11]
to set-up the channel estimation problem in the delay-Doppler
domain. In [10], we presented the idea of designing trans-
mit dictionary via signaling of complex exponential signals
x[t, fr] = 7K™ at time instant i over the k" subband
with a total of K parallel sub-channels corresponding to
delay frequencies { fk.}kK:_Ol. L denotes the maximum number
of Doppler frequencies {f;};—;' in the Doppler domain. We
consider two cases for channel estimation: 1) when the signal
is transmitted over the noise-free channel and 2) when the
channel is noisy and hence, noise is added to the transmitted
signal. The second case represents the practical communica-
tion scenario.

A. Noise-free scenario

In the noise-free scenario, signal y[i, fi] is received after
linear convolution of the transmitted signal x[i, f] with the
time-varying channel impulse response h[i, k] specified at time
instants ¢ with a maximum number of K taps. Mathematically,

signal y[i, fx] is given as [12]:
K-1
hli, klz[i — K, fi]
k=0
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On multiplying both sides of (1) with a multiplier ¢~/ e
at the receiver, we obtain

27rkf,C

Ywlis fr] = yli,

K-1
=Y hli )
k=0

where y,, represents the received signal weighted by
Equation (2) represents one-dimensional (1-D) Fourier trans-
form of the channel h[¢, k] along the channel delay spread. On
computing the Fourier transform along the time variable 7 and
inverse Fourier transform along the Delay frequency fx, we
obtain

L-1K-1
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where right hand side of (2) represents delay-
Doppler of the channel. We consider, D[f;,k] =
L-1K-1 ) omif, . 2mkfy .
S5 ywli, frle? T e?7x - in (2) above.
i=0 k=0

The above equation can be represented in matrix form as:
D = FH, 4)

where H is the matrix form of time varying channel with
dimension L x K, D is the matrix form of delay-Doppler
D|[f1, k] with same dimension, and F is the Fourier transform
operator that computes one-dimension Fourier transform along
the time-variable. Channel can be estimated by computing
inverse Fourier transform of the post processed received signal
D in the noise-free scenario using the above relation.

B. Noisy scenario

In the noisy scenario, received signal after processing is:

Deps =FH + N,
=D + N, S

where N denotes complex additive white Gaussian noise
with dimension L x K. Owing to the presence of noise
in (5) above, it is not possible to estimate channel H via
direct inverse Fourier transform of D similar to the noise
free scenario. Hence, one has to involve some other signal
processing methods to reconstruct the channel in the noisy
scenario.
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Fig. 1: Shallow water acoustic channel of duration 3sec estimated via [14] from field data of SPACEO8 experiment [15], plotted as a 2D
image showing significant time-variability in primary and secondary multipath regions (in linear colorbar).

In accordance with the CS theory, we sense fewer compo-
nents of the post-processed received signal, D at the receiver
end. This can be achieved using:

Dsub =®D + Na (6)

where subscript ‘sub’ denotes the subsampled signal and ®
denotes the sub-sampling operator that randomly picks S%
samples of D, where S = [£L], M is the number of sub-
samples picked from D, and [.] represents the ceil function.

From Fig. 1b and lc, it is noted that the lower Doppler
frequencies that represent the slowly-varying components of
the channel are the most dominant and contain most of the
energy of the channel, while comparatively less energy is
contained in the high frequency components. Also, it is evident
from these figures that lower Doppler frequencies have dense
high amplitude coefficients, whereas higher Doppler frequency
components are sparser compared to lower Doppler. We use
this information of sparse and non-sparse channel components
for variable sampling in this work.

Let us denote lower Doppler frequencies by support 7' and
higher Doppler frequencies by support 7 as shown in Fig.1c.
As stated above, lower Doppler frequencies represent steady
component of the channel and have high energy as compared
to higher frequencies. Using this prior information about the
channel, we retain all the samples in support 7" and do partial
sampling in support 7°°. This modifies (6) to include support
T as follows:

Dsub,prior = (}priorD + N, (7)

where ®,,.;,, represents the sub-sampling operator that does
full sampling on support 7' and partial sampling on support
T°. Dgyp prior is the result of sub-sampling that has used prior
information about the channel. The above can be written in
the vectorized form as below:

dsub,prior = Qv,Rd +n, (8)

where dgup prior, d and n represent the vectorized form
of Db prior, D and N, respectively. ®, r represents the
operator that does partial sampling in the vectorized form of
delay-Doppler.

The problem of estimating channel can be posed as an
optimization problem with the prior that the channel is sparse
in the delay-Doppler domain. We formulate our problem as the
LASSO (Least Absolute Shrinkage and Selection Operator)
optimization problem [20]:

argmin||dsup prior — <I’1),Rd||§ subject to: ||d||1 <7, (9)
d

where 7 is the measure of sparsity of the channel in delay-

Doppler domain. We solve the above via the MATLAB solver

‘spgll’ [21], [22]. Equation (4) is used to recover channel in

the time domain after solving (9).

IV. EXPERIMENTAL RESULTS

Numerical results are presented in this section with the
channel discussed in section-II as the ground truth. Exper-
iments are performed for window lengths ranging from 3
msecs to 24 msecs with sampling ratios 40%, 70%, and 100%.
We consider zero Doppler frequency as support 7' and use
7 =0.3V/LK in these experiments. Results are generated for
200 Monte-Carlo simulations with white Gaussian noise being
added to the received signal at 10dB and 5dB channel SNR.
Channel estimation performance is quantified via Normalized
Mean Square Error (NMSE) (in dB) given by

L-1K-1

NMSE = 101log,, | =2 — . (10)
> > [H( K

i=0 k=0

where H and H represent channel ground truth and recon-
structed channel respectively. Figure-3 and 4 present results on
channel estimation using the sparsity constraint on 2-D time-
domain channel [10], using physics-inspired CS with sparsity
constraint on 2-D Fourier transform of channel [11], and the
proposed work. Fig.-3 and 4 present channel estimation results
with noisy channel SNR of 10 dB and 5 dB, respectively.
Comparatively improved performance of channel estimation
is observed with the proposed work. This observation also
shows that more is the sparsity, better is the recovery of the
signal from its compressive measurements.
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Fig. 2: Sparsity comparison of the channel in the 2-D Fourier
domain and the delay-Doppler domain.
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Fig. 3: Channel estimation using the proposed work at 10dB SNR
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This is to note that better results are obtained at lower
sampling ratios because at lower sampling ratios, ratio of
higher amplitude positions (with higher SNR) to lower SNR
samples is higher compared to 100% sampling ratio. This
results into better channel recovery with the proposed CS with
prior information set-up in the delay-Doppler domain.

V. CONCLUSION

Compressed sensing is utilized for underwater acoustic
channel estimation in this work. Channel is recovered in
the delay-Doppler domain using sparsity in that domain.
Prior information about energy and sparsity along different
Doppler frequencies is used for sub-sampling of delay-Doppler
coefficients leading to variable density sampling in different
Doppler frequency range. The proposed method is observed
to perform better compared to channel estimation using CS in
the time-domain or 2-D Fourier domain.
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