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Abstract

In this work, we propose a new method of accelerated functional MRI recon-
struction, namely, Matrix Completion with Sparse Recovery (MCwSR). The
proposed method combines low rank condition with transform domain spar-
sity for fMRI reconstruction and is solved using state-of-the-art Split Bregman
algorithm. We compare results with state-of-the-art fMRI reconstruction al-
gorithms. FExperimental results demonstrate better performance of MCwSR
method compared to the existing methods with reference to normalized mean
squared error (NMSE) and other reconstruction quality metrics. In addition,
the proposed method is able to preserve voxel activation maps on brain volume.
None of the other existing methods is able to demonstrate this property. This
shows that the proposed method is accurate and faster, and preserves the voxel
activation maps that is the key to study fMRI data.
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1. Introduction

Functional magnetic resonance imaging (fMRI) has drawn considerable at-
tention for neuroscience research and clinical applications [1, 2, 3]. fMRI signal,
also known as Blood oxygen level dependent (BOLD) signal, is T2* weighted
imaging that consists of 3D brain volumes captured over time [4]. One limi-
tation of fMRI is the long scanning time that leads to annoyance in patients
resulting in low signal-to-noise ratio (SNR) due to subject’s movement [5]. To
this end, compressed sensing (CS) is gaining a lot of interest in recent times for
fMRI recovery [6, 7, 8, 9, 10].
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Compressive sensing allows reconstruction of fMRI brain volumes using
smaller number of k-space measurements that are picked up at sampling rate
below the required Nyquist sampling frequency [11]. This reconstruction us-
ing lesser samples leads to reduction in scanning time because scanning time
is directly related to the number of sampling measurements. Faster scanning
implies lower repetition time (TR) and hence, higher sampling frequency. This
allows larger bandwidth of signal to be reconstructed without aliasing noise [12].
Thus, not only the quality of reconstructed signal improves, we have more in-
formation because of larger signal bandwidth permitted. This further improves
the statistical power in BOLD signal that is advantageous in fMRI applications
such as disease diagnosis, study of brain functional networks, etc [13]. Thus,
reconstruction using lesser samples is extremely advantageous. This is to note
that CS based recovery is being extensively used in many other applications
such as in other medical imaging modalities [14, 15] and in videos [16, 17].

Conventional fMRI scanners reconstruct fMRI brain volumes (consisting of
image slices captured in axial, sagittal, or coronal planes) by applying direct
inverse Fourier transform (IFT) to the k-space scanner captured data. However,
direct IFT yields noisy reconstruction owing to magnetic deformities, motion
artifacts, and movement of gradient coils employed in scanners. To counter
these problems, optimization based methods are increasingly been proposed
for fMRI reconstruction in recent times. These methods are largely based on
compressive sensing strategy.

Compressive sensing based fMRI reconstruction recovers volumes from un-
dersampled k-t space measurements. Compressed sensing solves a set of under-
determined equations that has infinitely many solutions. In order to recover a
unique solution that corresponds to the recovered signal of interest, regulariza-
tion terms are added. Many methods have been developed for CS based fMRI
reconstruction [6, 7, 8, 9, 10]. These methods can be largely divided into two
categories. First category includes online methods that can be implemented as
causal systems in real time [6, 7]. These methods implement volume-by-volume
reconstruction wherein volume at time ¢ is reconstructed using reconstructed
volume of time ¢ — 1, hence, assuming causality in the reconstruction frame-
work. Second category includes offline methods that first store k-space data of
all fMRI volumes and later, utilize this complete information across both time
and space, also called k-t space data, to reconstruct fMRI volumes [8, 9, 10].

In [6, 7], each fMRI slice is reconstructed separately over time. These meth-
ods fall in the category of online recursive methods. In both these methods,
each slice at time point ¢ is assumed to be the sum of slice at time point ¢-1
and some additional information or residual. While the slice at time point ¢-1 is
known, this residual is unknown. In [6], sparsity constraint is imposed on this
residual in the CS framework. In [7], mutual information between slice at time
t and time ¢-1 is maximized and correspondingly, residual is estimated using
linear dynamic sparse modeling.

Methods [8, 9, 10] are offline methods. For example, in [§], fMRI data is
reconstructed in CS framework by adding sparsity on the fMRI data in the
wavelet domain as a regularization term or constraint. Daubechies wavelet is



used as the sparsifying basis and applied to fMRI brain volumes on a slice-
by-slice basis, i.e., every slice of brain volume is captured over all time points
and stacked as columns to form a matrix. Reconstruction of each such matrix
corresponding to a slice is done separately.

In [9], CS is utilized for fMRI reconstruction by adding rank deficiency as a
constraint. It is assumed that the fMRI volume data is low rank having a small
number of significant singular values. Accordingly, iterative hard thresholding
algorithm is used to recover low-rank observation matrix. However, this method,
also called as k-t FASTER method, requires rank specification. This method is
also called matrix completion owing to signal recovery from low rank observation
matrix. In another work [10], fMRI reconstruction is performed using low-
rank plus sparse (LR+S) decomposition of the fMRI signal. Here, an iterative
framework is used wherein the low rank and sparse components of fMRI data
are reconstructed separately.

In this paper, we propose a new fMRI reconstruction method. The salient
contribution of this paper are as follows:

1. We apply both matrix completion (MC) and sparse recovery in CS based
fMRI reconstruction to improve the reconstruction accuracy. We name the
proposed method as Matrix completion with Sparse Recovery (MCwSR).
To the best of our knowledge, this method has not been used in fMRI
reconstruction so far. Since this proposed method is offline reconstruction
method, their performance has been compared with other offline methods
such as direct inverse Fourier transform (IFT), CS with wavelet sparsity
[8], k-t FASTER [9], and LR+S [10].

2. We demonstrate that the proposed MCwSR method is able to preserve
voxel activation maps on brain volume, while existing methods provide
false activation that may lead to misleading findings on fMRI data. This
shows the superior performance of the proposed method in fMRI appli-
cation and provides a mechanism to test an fMRI reconstruction method
beyond NMSE.

3. While the existing k-t FASTER method requires rank specification for
hard thresholding, we modified this method using soft thresholding and
name it modified k-t FASTER method. Although it provides improved
performance in terms of NMSE (but inferior to the proposed MCwSR
method), it is computationally expensive.

4. Interestingly, the performance of fMRI reconstruction in CS setting while
imposing sparsity in the Fourier domain (CSFD) is not demonstrated or
compared. We observed fMRI data to be sparse in the Fourier domain and
checked reconstruction quality with the CSFD method. We observe this
method to be performing second best to the proposed MCwSR method
that is worth consideration.

This paper is organized into six sections. Section 2 briefly presents com-
pressive sensing based fMRI reconstruction. Section 3 briefly mentions the real



dataset used in this work. Section 4 describes the proposed MCwSR method
implemented via Split Bregman iterative algorithm. Experimental results on
fMRI data are presented in Section 5. We provide both quantitative and quali-
tative reconstruction results in section 5 to illustrate the reconstruction quality.
In the end, conclusions are presented in section 6.

2. CS based fMRI Reconstruction

A functional MRI data is a 4-dimensional data with 3D brain volume cap-
tured over number of time points. This data is represented as belonging to 4D
space R"XmyXn=XT" where n, is the number of brain slices (or images) along
zaxis with each slice of size of n; X n,. In slice by slice fMRI reconstruction,
Casorati matrix [18] is formed corresponding to all time points of each slice such
that the size of the matrix is n x T, where n = n, X n, is the number of voxels
in each brain slice and T is the number of brain volumes. Thus, Casorati matrix
is formed by stacking one fMRI slice over each time point as one column of the
matrix.

Let us consider one such matrix X corresponding to a single slice captured
over T time points. In compressive sensing based reconstruction, undersampled
fMRI data is acquired in k-space with a sampling rate that is below the Nyquist
rate. The fMRI reconstruction problem from undersampled k-space can be
represented as follows:

Y = ®FX + ¢, (1)

where Y denotes the compressively sensed k — t space data, F denotes the 2-D
Fourier transform operator applied on Casorati matrix X of one slice, ® is the
sensing matrix that contains partial measurements of k —t space, and & € R"*7
denotes the measurement noise. The aim of fMRI reconstruction problem is to
recover Casorati data matrix X, given partial Fourier measurements Y and the
sensing matrix ®. Reconstruction is done independently for all n, brain slices.

3. Dataset Description

In this paper, we have utilized two publicly available fMRI dataset. These
data are available from the openfMRI repository!.

Dataset-1 [19]: This dataset consists of 36 acquisitions of interleaved brain
slices of size 72x72 each at every time point. The data is captured at 179
time points, resulting in a matrix X of size 5184x179. During the false belief
experiment, the subject had to answer questions about stories that referred to
either person’s false belief (mental trials) or to outdated physical representations
such as an old photograph. For more details on this dataset, please refer to [19].

Thttps://openfmri.org/data-sets



Dataset-2 [20]: This dataset consists of 33 acquisitions of contiguous brain
slices of size 64x64 each at every time point. The data is captured at 300 time
points, resulting in a matrix X of size 4096x300. Subjects were asked to perform
the balloon risk-taking task in an event-related design. In this task, there is a
chance to earn money by clicking the balloon. Each click increases the size of
the balloon that may lead to balloon explosion by over-inflation and hence, the
risk. For more details of this data, please refer to [20].

4. Proposed fMRI Reconstruction Method

In this section, we present the proposed MCwSR method that is aimed to
provide efficient accelerated fMRI reconstruction using undersampled k-space
measurements.

4.1. Proposed MCwSR Method

In this method, we propose to utilize both matrix completion and sparsity
in the CS framework for the fMRI reconstruction and hence, name it as Matrix
completion with Sparse Recovery (MCwSR) method.

We assume data matrix X to be low rank [9]. In order to show the validity
of this assumption, we plot the sorted singular values of fMRI data matrix X
corresponding to middle slice (slice no. 18) of one subject of dataset-1 in Fig.1.
The rapid decay of sorted singular values in Fig.1 indeed confirms the low rank
nature of fMRI data.
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Figure 1: Decay of singular values of fMRI data

In general, sparsity is imposed on the transform domain data. In order to
figure out the domain where this fMRI data is more sparse, we plot the sorted
transform domain coefficients of matrix X corresponding to the middle slice
(slice no. 18) of one subject of dataset-1 in: a) frequency domain (FD) and b)
wavelet domain (Refer to Fig.2). From these figures, we observe that fMRI data
is sparser in the frequency domain. Thus, in addition to the assumption of low
rank on the observation matrix X, we assume it to be sparse in the frequency
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(a) Sorted magnitude values of Frequency domain coefficients
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(b) Sorted coefficients obtained using dB4 wavelet with 3-level decomposition

Figure 2: Sorted magnitude values of coefficients in transform domain

domain. This motivates us to exploit both low-rank and sparsity constraints
in fMRI reconstruction which has not been done earlier in the fMRI literature.
Thus, we formulate the proposed MCwSR fMRI reconstruction problem as be-
low: .

X = arg min Y — ®FX|2 + i |XI, + oo [¥X] @)

where 'F’ denotes the Frobenius norm which is defined as ||Y — <I>FXH?p =
Tr[(Y — ®FX)T(Y — ®FX)]. ||.||, denotes I! norm, defined as absolute sum
of entries in a matrix. '+’ denotes the nuclear norm which is the I norm of its
singular values. ¥ denotes the Fourier transform in the temporal direction. p;
and peo are the regularization parameters.

The two regularization terms in (2) imply low rank and sparsity constraints
on Casorati observation matrix X, respectively. First regularization term asso-
ciated with p; in the above model assumes matrix X to be low rank. Second
regularization term in the above model assumes X to be sparse in the Fourier
domain (FD). Both these regularization terms are non-smooth and involve X.
There is no off-the-shelf algorithm to solve (2) and hence, we utilize Split Breg-
man algorithm [21, 22] that splits this problem into multiple subproblems that



are easier to solve. Next, we explain Split Bregman based methodology to solve
this problem.

4.1.1. Low Rank and Sparse CS Recovery via Split Bregman

This methodology is based on Bregman type variable splitting with alternat-
ing direction method of multipliers (ADMM) [23]. It utilities variable splitting
to decompose original problem into easier subproblems. We introduce two proxy
variables Z and W for the last two regularization terms in (2) [23]. It allows
solving (2) via splitting it into subproblems. The new objective function is:

X = arg nin Y ~ ®FX|% 4 [WI, + oo |92, +
st. W=Xand Z=X.

Here, W and Z are acting as a proxy for variable of interest X. Following
[23], we substitute equality constraints for each of the proxy variables to split
(3) and introduce Bregman variables, also known as augmented Lagrangian
multipliers, B; and B to solve (3) as below:

o o ,
X =arg min Y — ®FX||p +pn [WI|, + 2 [| ¥ 2], +
TIW =X = Ba|lf + 212~ X - Ball7.

where 771 and 7y are regularization parameters and, B; and B, are the Bregman
variables used to enforce equality between original and proxy variables. The
above equation consists of three variables W, Z, and X along with two more
variables, B; and Bs. We spilt the above problem into three subproblems.
Each subproblem may be treated as minimization over one variable while fixing
other variables. We use an alternating minimizing scheme to solve (4) which
alternatively updates each three variables along with Bregman variables updates
until convergence. The pseudo code of the algorithm is provided in Algorithm-1.

This is an iterative method for iterations j=1, 2,.... Each iteration comprises
of four steps: a) Update of proxy variable W, b) Update of proxy variable z7,
¢) Update of X7 d) Update of Bregman variables B? and B, where j is an
iteration number. We stop iterations either by comparing objective function
value in (2) with predefined tolerance value or stopping with fixed number of
iterations.

The solution of each subproblem is explained in the following subsections.

4.1.2. W-subproblem

The first subproblem is nuclear norm minimization of matrix W as shown
in Algorithm-1. We solve this subproblem using soft thresholding [24]. Soft
thresholding is found to be one of the best method among the many existing
algorithms [24, 25] for low rank matrix recovery. The solution of W-subproblem



is summarized in Algorithm-2.

Algorithm 1 Pseudo code of proposed MCwSR method

1: Intialize puq, po, 1, 12, B?, Bg, X0 j=1
2: while convergence criteria not met do
3: ‘W-subproblem

WJ = arg mvén wa [|W|, + % HW — Xt~ lelHi
4: Z-subproblem
Z’ = arg min po | RZ|, + 1 HZ . S Bngz
Z 2 F
5: X-subproblem
XJ = argmin |[Y - ®FX|}+1 HWj X B{‘JHiJr%Q Hzf X - BJ;Hi .
6: Bregman variable update
B =B '+ X/ - W/,
B, =B} ' +X -7/

7 J=7+1
8: end while

SVD of the matrix W7 is required to be computed as in step 2 of Algo-
rithm 2. Since direct SVD computation is time intensive due to large size of the
observation matrix, a different strategy is adopted to minimize computational
complexity. Instead of direct SVD computation, singular values and right sin-

gular vectors are determined using eigen decomposition of (Wj )H W7 as below:

(W Wi = vs2vT, (5)

where H denotes matrix Hermitian transpose. Left singular vectors U are de-
termined from W’ = USV? where W7, singular values matrix S, and the right
singular vectors’ matrix V are known. This completes the SVD computation of
matrix W7,

4.1.8. Z-subproblem
The second subproblem is analysis prior /! minimization problem. For any
analysis prior ! minimization problem such as

‘ 8
min o[ ¥P, + 5 [P - Ql, (6)



Algorithm 2 Pseudo code of W-subproblem in Algorithm-1

1: Intialize W/ = X7~1 4+ B!,

2: Compute singular value decomposition (SVD) of W7 = USV?, where U
and V are the matrices containing left and right singular vectors, respec-
tively, and the matrix S contains the singular values.

3: Soft thresholding is applied on the singular values contained on diagonal of
S as

I' = Soft(S, &I) = sgn(S) ® mazx {0, S| — MI} ,
T m

where ® denotes the element-wise product, |S| denotes absolute values of
matrix S and I is identity matrix. I in the above equation ensures soft
thresholding only on diagonal elements of S. For the nonzero elements of S,
sgn(S) = S./|S|, otherwise sgn(S) = 0.

4: Next, WY is updated with updated singular values and older singular ma-
trices

W/ =Uurv’,

where P,Q € R™*7 and «, 3 > 0, the solution is [26]

P = ¥/ (Soft(¥Q, %A», (7)

where A is a matrix containing all ones, Q is the initial estimate of P, and
"Soft’ is defined as

S0ft(#Q. §A) = sgn(¥Q) @ mar {0, [wQ| - Ga}. (®)

where ® denotes the element-wise product, |¥ Q| denotes absolute values of ma-
trix ¥Q . For the nonzero elements of ¥Q, sgn(¥Q) = ¥Q./|PQ|, otherwise
sgn(¥Q) = 0.

Hence, the closed form solution of Z at iteration j in Z-subproblem is

Zi = W (Soft(W(X/' + BIY), %A)x (9)
2

where W denotes the Hermitian transpose of the sparsifying basis ¥ used in

(9)-

4.1.4. X-subproblem

With fixed W and Z, this subproblem is quadratic as shown in Algorithm-1.
It can be solved using conjugate gradient algorithm [27]. Last step in Algorithm-
1 is the update of Bregman variables that is explained in Algorithm-1.



Figure 3: Radial sampling pattern of one slice: (a) 12 radial lines (6.065 acceleration
factor); (b) 24 radial lines (3.495 acceleration factor)

5. Experimental Results

In this section, we present results of the proposed MCwSR method in fMRI
reconstruction and compare these results with some of the existing state-of-the-
art algorithms.

5.1. Sampling of k-space Data

Since the raw k-t space data is not available from the above dataset, we
simulated the undersampled measurement data Y required for testing the pro-
posed methods by computing the Fourier transform of X followed by under-
sampling using ® as described in [28]. This is a standard methodology in any
reconstruction related research work. Fig.3 shows two different radial sampling
measurement patterns. As evident from Fig.3, these radial measurement pat-
terns sample more data points in the low frequency region compared to the high
frequency region.

We consider different sampling patterns for each time point data in order to
maintain incoherency amongst the columns of matrix X [28]. Radial sampling
is chosen because this is by far the fastest k-space sampling method in real time
application [28]. Please note that our work is general and can be used with any
sampling pattern.

5.2. Brief Description of Methods Implemented

We compare results of the proposed MCwSR method with other offline fMRI
reconstruction methods including CS with wavelet sparsity [8], k-t FASTER
[9], LR+S [10], etc. In addition, we have implemented proposed modified k-t
FASTER and CSFD methods. Below we present brief overview of each recon-
struction method implemented. We also provide parameter values used in the
simulation of these methods.
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5.2.1. k-t FASTER method [9]

k-t FASTER method reconstructs fMRI data assuming data matrix X to
be low rank. This method is implemented by solving the below optimization
problem [9]:

X = arg m)%n Y — <I>FX||§, s.t rank(X) =, (10)

where r is pre-defined rank of X. In k-t FASTER [9], hard thresholding is
applied on the singular values of data matrix X as explained below. First, SVD
of an initial crude estimate of matrix X is computed

X =UsvT, (11)

Next, hard thresholding is applied on the singular values contained in S as

~_ Jlsil=p i<y
SZ_{ 0 P> (12)

where 1 is a constant, s; is i*?

value after hard thresholding.

The value of constant p is chosen to be 0.5 as used in [9]. In the simulation,
rank r is taken to be equal to the number of time frames. This value provided
least normalized mean square error (NMSE) between reconstructed and original
fMRI data on the two dataset considered in this work.

singular value of S, and §; is updated singular

5.2.2. Proposed Modified k-t FASTER

Pre-defined rank of X with hard thresholding on its singular values is im-
posed in k-t FASTER method explained above for fMRI reconstruction. Pre-
defined hard-thresholding of rank may not provide best results as significant
information may be contained in data associated with the rejected/dropped
singular values. Thus, we propose to solve fMRI low rank reconstruction prob-
lem by soft thresholding [24]. To the best of our knowledge this method so
far has not been used in fMRI for reconstruction. We name this method as
proposed modified k-t FASTER.

In this method, the reconstruction problem is formulated as below:

X = arg min|[Y — SFX|% + A, X, (13)

where \; is regularization parameter and '+’ is the nuclear norm. This problem
is solved iteratively using soft thresholding equation as used in Algorithm-2.

This proposed method does not require pre-defined rank specification and
hard thresholding on the singular values unlike k-t FASTER method which is
not a practical solution. Rather, this proposed modification is general enough
to exploit rank deficiency in matrix completion.

We compared normalized mean square error (NMSE) results on signal re-
construction for different values of A\; ranging between 10 to 500. We obtained
minimum NMSE with A\; = 300. Hence, we empirically selected A\; = 300 in
(13).
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5.2.8. Low rank plus sparse (LR+S) method [10]
This method reconstructs fMRI data using low rank and sparse matrix de-
composition and hence, is solved using the following optimization framework:

£.8 = arg mip |Y — ®F(L+ )} + Ao LI, + X Sl (14)

where Ay and A3 are regularization parameters. The fMRI data matrix X is
reconstructed as: R o
X=L+S. (15)

We empirically selected A2 = 200 and A3 = 2 in (14) that provided us minimum
NMSE.

5.2.4. CS with wavelet sparsity (CSWD) [8]

In this method, compressive sensing based reconstruction of fMRI data is
carried out assuming the fMRI data to be sparse in the wavelet domain [8].
Hence, fMRI reconstruction is done by using the below optimization framework:

X = arg mjn | Y ~ FX |} + Ay [WX]), (16)

where )4 is regularization parameter and W is a wavelet matrix operator. We
used Daubechies’ orthogonal wavelet ’db4’ (filter lengths 8) with 3-level decom-
position as has been used in [8].

5.2.5. CS with frequency domain sparsity (CSFD)

It has been shown in Fig.2 above that the fMRI data is sparser in the fre-
quency domain compared to the wavelet domain. Thus, we propose to test
fMRI reconstruction using compressive sensing with Fourier domain (FD) spar-
sity. We formulate the reconstruction problem as:

X = arg min |Y — ®FX|[; + A [[FX]|, , (17)
where F is the Fourier matrix operator.

5.2.6. CS with time domain Sparsity (CSTD)

This method of signal reconstruction is also called basis pursuit method [29]
and is one of the popular methods of signal reconstruction assuming signal to be
sparse in the time domain. Since we implemented CSFD and CSWD, we are also
interested in looking at results wherein sparsity is imposed in the time domain
(CSTD). Using CSTD, the problem of fMRI reconstruction can be formulated
as below: R

X =arg m)én||Y—<I>FX||§7+>\4 X[ - (18)

All the above three methods CSWD, CSFD, and CSTD require only one
parameter A4 to be specified in equations (16)-(18). In [30], it is suggested to
consider

12



M < maz(@T(IFT(Y))). (19)

where IFT stands for Inverse Fourier Transform. In order to meet the above
condition, we chose

Ay = 0.009 x maz(®T (IFT(Y))) (20)
that meets (19).

5.2.7. Proposed MCwSR method

The proposed MCwSR method reconstructs using both MC and Sparse Re-
covery in Fourier domain as formulated in (2) and implemented via (4). This
method requires six parameters i, p2, n1, 72, B1, and By to be initialized.
Split Bregman algorithm’s internal variables are set to 17;=1,=10"2. Bregman
variables By and By are initialized to matrices containing all one’s. We use
L-curve method to initialize py and po [31]. With this method, we arrive at the
following values: ;=102 and us=10%. The fMRI data matrix X in Alogrithm
1 is initialized using crude initial estimate via direct inverse Fourier transform
(IFT). Direct IFT method computes IFT of given k — ¢ space data Y to recon-
struct X as shown below:

X = IFT(Y). (21)

5.3. Results

For all of the methods explained above, we set the maximum number of
iterations (required in optimization) to be equal to 500. Fig.4 represents the
optimization function value versus number of iterations for MCwSR method
corresponding to middle slice reconstruction of one subject of dataset-1. In
general, maximum no. of iterations should be chosen for any algorithm such that
it converges similar to Fig.4. We set the following convergence criteria for all
methods: optization function value(end)—optimization function value(end—
1) < 1075. All simulation was run on a computer with an Intel Core i7 CPU
at 2.4 GHz, and 16 GB of RAM utilizing MATLAB (R2014a: The Mathworks,
Natick, MA, USA).

We present reconstruction results, for varying number of radial sampling

X
/1,

and peak signal-to-noise ratio (PSNR). Table 1 presents reconstruction results
on one slice (averaged over all time points). We considered middle slice of both
the dataset, slice no. 18 (total slices=36) of dataset-1 and slice no. 16 (total
slices=33) of dataset-2. Fig.5 and Fig.6 present corresponding visual results for
both the dataset using all methods. We present these results on subject 1 of
both dataset.

From figures 5 and 6, we observe that the reconstruction quality with the
proposed accelerated modified k-t FASTER and MCwSR method is superior
compared to the existing state-of-the-art methods. Interestingly, results with
CSFD have not been presented earlier in fMRI reconstruction, although it really

lines, in terms of normalized mean square error NMSE = HX -X
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Figure 4: Objective function value versus number of iterations

Table 1: Reconstruction results on a fixed slice (stacked for all time points as Casorati Matrix)

NMSE PSNR Computational time
fMRI dataset Technique 12 lines 24 lines 12lines  24lines 12 lines 24 lines
Dataset 1 k-t FASTER [9] 0.2359 0.1584 7.29 10.75 12.59 11.65
(Middle slice  Proposed Modified k-t FASTER  0.0764 0.0516 16.68 20.36 267.31 254.48
Slice n0.18)  LR+S[10] 0.1374 0.0796 11.95 16.89 55.70 56.72
Subject 1 CSTD (BPDN) 0.1755 0.1099 9.94 13.87 14.61 15.36
No. of time ~ CSWD [8] 0.2190 0.1380 7.79 12.07 26.09 23.48
Points=179  CSFD 0.0864 0.0579 16.32 19.66 27.9 26.20

Proposed MCwSR 0.0496 0.0458 20.90 21.55 48.30 47.20
Dataset 2 k-t FASTER [9] 0.1636 0.1098 1171 15.16 21.52 20.05
(Middle slice  Proposed Modified k-t FASTER ~ 0.0374 0.0355 24.56 24.97 374.29 352.03
Sliceno.16)  LR+S[10] 0.1123 0.0360 14.78 25.00 123.42 112.74
Subject 1 CSTD (BPDN) 0.1186 0.0729 14.39 18.88 30.92 28.57
No. of time ~ CSWD [8] 0.1599 0.1020 12.15 16.12 50.20 51.63
Points=300  CSFD 0.0512 0.0399 21.93 24.28 54.33 53.76

Proposed MCwSR 0.0406 0.0376 23.65 2437 90.09 88.17

performs very well. This validates our assumption that the data is indeed sparser
in the frequency domain compared to the time domain or the wavelet domain
and hence, the choice in the proposed MCwSR method.

From Table-1, we note that on a single slice reconstruction, modified k-t
FASTER method seems to be performing better on dataset-2 with reference
to the proposed MCwSR method. This is due to fact that dataset-2 has 300
number of time points and dataset-1 has 179 time points. With more number
of time points, the rank of matrix X may reduce on some slices in dataset-2,
improving the performance of modified k-t FASTER in dataset-2. However,
MCwSR method still performs better in terms of computational time on both
the dataset. We will see later that, on the entire fMRI volumes and brain slices,
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(a) Original and reconstructed slice no. 18, time point 100, 12 radial lines
left to right: Original; k-t FASTER; Modified k-t FASTER; LR+S; CSTD; CSWD;
CSFD; Proposed MCwSR

(b) Difference Images (Ground truth - Reconstructed), slice no. 18, time point 100,
12 radial lines
left to right: Original; k-t FASTER; Modified k-t FASTER; LR+S; CSTD; CSWD;
CSFD; Proposed MCwSR

(c) Original and reconstructed slice no. 18, time point 100, 24 radial lines
left to right: Original; k-t FASTER; Modified k-t FASTER; LR+S; CSTD; CSWD;
CSFD; Proposed MCwSR

(d) Difference Images (Ground truth - Reconstructed), slice no. 18, time point 100,
24 radial lines
left to right: Original; k-t FASTER; Modified k-t FASTER,; LR+S; CSTD; CSWD;
CSFD; Proposed MCwSR

Figure 5: Reconstruction Results on subject 1 Dataset-1: False belief fMRI data
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(a) Original and reconstructed slice no. 16, time point 150, 12 radial lines
left to right: Original; k-t FASTER; Modified k-t FASTER; LR+S; CSTD; CSWD;
CSFD; Proposed MCwSR

(b) Difference Images (Ground truth - Reconstructed),slice no. 16, time point 150,
12 radial lines
left to right: Original; k-t FASTER; Modified k-t FASTER; LR+S; CSTD; CSWD;
CSFD; Proposed MCwSR

(c) Original and reconstructed slice no. 16, time point 150, 24 radial lines
left to right: Original; k-t FASTER; Modified k-t FASTER; LR+S; CSTD; CSWD;
CSFD; Proposed MCwSR,

(d) Difference Images (Ground truth - Reconstructed), slice no. 16, time point 150,
24 radial lines
left to right: Original; k-t FASTER; Modified k-t FASTER; LR+S; CSTD; CSWD;
CSFD; Proposed MCwSR

Figure 6: Reconstruction Results on on subject 1 Dataset-2: Balloon risk-taking task
fMRI data

16



MCwSR excels in performance in terms of NMSE compared to all the methods
implemented.

Computational time analysis

Table 1 shows the computational time of reconstruction of middle slice of
subject 1 of both dataset. We observe that computational time is least with
CSTD because time domain sparsity does not involve bigger matrix multiplica-
tions compared to CSWD and CSFD. On the other hand, modified k-t FASTER
is computationally most expensive compared to all methods. This is owing to
the fact that this method computes SVD in every iteration that is computation-
ally expensive. Moreover, this method consumes larger number of iterations for
convergence. CSFD consumes less time than the proposed MCwSR, however,
it observes 2-5 dB PSNR performance loss in dataset-1 and 0-2 dB PSNR per-
formance loss in dataset-2 compared to the MCwSR method. This implies a
trade-off between computational time and reconstruction efficiency with refer-
ence to MCwSR and CSFD. Please note that in offline reconstruction methods,
a little higher computational time in reconstruction can always be compromised
provided the reconstruction quality is better and that indeed is the case with
the proposed MCwSR method.

Multi slice reconstruction results analysis

Table 2 presents reconstruction results averaged over all volumes and over
all slices. Results are tabulated at 6, 12 and 24 number of radial sampling
lines. From these results, we observe that the proposed MCwSR consistently
performs better in terms of NMSE than the existing reconstruction methods.
Computational time in all the methods is roughly equal to the no. of slices
x computational time of one slice reconstruction. Since these values were pre-
sented in Table 1, hence, the computational time is not repeated for spacious
presentation of NMSE results in Table 2.

From Table 2, we observe that NMSE increases for all methods when number
of radial lines are reduced (fewer k-space measurements). CS with FD sparsity
(CSFD) shows reconstruction performance that is quite close to the modified
k-t FASTER. This is to note that the proposed MCwSR method assumes both
low-rank (salient feature of modified k-t FASTER) and sparsity in the frequency
domain (salient feature of CSFD). Hence, it yields better results compared to
all the methods and reconstructs fMRI data quite efficiently at lower number of
radial sampling lines.

We also evaluated the performance of all reconstruction methods in terms
of signal-to-error ratio (SER) in dB which is defined as

Fig.7a shows the SER vs number of radial lines for middle slice (slice no. 18)
of subject 1 of dataset-1. SER curves show that MCwSR outperforms the other
reconstruction methods. Also, we observe that SER in case of MCwSR method
is consistently very high at all radial sampling lines considered. This implies
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Table 2: Averaged NMSE results on all slices of all volume

NMSE PSNR
Dataset Technique 6 lines 12 lines  24lines 6lines 12lines  24lines
Dataset 1 k-t FASTER [9] 0.2776  0.2419 0.1633 6.458 8.93 12.37
Subject 1 Proposed Modified k-t FASTER 0.1541  0.0729 0.0510 12.836  19.35 22.76
LR+S [10] 0.2115  0.1175 0.0680 10.07 15.09 19.99
CSTD (BPDN) 0.2295  0.1655 0.1042 9.434 1235 16.38
CSWD [8] 0.2936  0.2114 0.1187 7.201 10.08 15.11
CSFD 0.0828  0.0713 0.0542 18.68 19.85 22.16
Proposed MCwSR 0.0554  0.0519  0.0443 22.27 22.86 23.15
Dataset 2 k-t FASTER [9] 0.3244 0.2171 0.1516 9.856 14.01 17.55
Subject 1 Proposed Modified k-t FASTER 0.1016 0.0835 0.0648 19.91 22.78 26.01
LR+S [10] 0.2061 0.1282 0.0805 14.83 19.08 23.39
CSTD (BPDN) 0.2008 0.1490 0.0951 14.71 17.80 21.83
CSWD [8] 0.2675 0.1974 0.1178 12.21 15.14 19.80
CSFD 0.0823 0.0703 0.0623 23.08 25.59 26.19
Proposed MCwSR 0.0713  0.0691 0.0601 25.35 25.70 26.38

that we can reconstruct fMRI data by sampling much lesser measurements in
k — t space with the proposed MCwSR method compared to other methods.
Hence, higher acceleration is possible with MCwSR method that in turn will
decrease the fMRI acquisition time. Fig.7b shows the SER vs number of radial
lines for middle slice (slice no. 16) of subject 1 of dataset-2.

SER (in dB)

MCwSR (proposed)
—& —CSTD (BPDN)

= &= CSTD (BPDN)
—a— CSPD

—e—LR+S [10] —— CSWD

&9 Maodified k-t FASTER (proposed) —8— Kt FASTER
—&— CSFD —+—LRsS

5: —+—CSWD 8] MCwWSR (proposed) g
—&— k-t FASTER [9] Modified k-t FASTER (proposed)

4 L L 1 1 I I I I

5 10 15 e F2 Er 2 40 % 10 15 20 25 30 35 40
Number of radial lines Number of radial lines
(a) (b)

Figure 7: SER vs number of radial lines; (a) Subject 1 Dataset-1, (b) Subject 1
Dataset-2

Group-level reconstruction analysis

Fig.8a and Fig.8b depicts NMSE results averaged over all volumes and over
all slices on dataset-1 and 2, respectively. 12 radial lines are used for under-
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sampling of the k-t space data. We present results on first five subjects of each
dataset. We observe that for dataset-1 MCwSR is consistently giving better

results compared to all the methods for all subjects.
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Figure 8: NMSE vs subject number using 12 radial lines:
(a) dataset-1 Middle slice 18, (b) dataset-2 Middle slice 16

Statistical analysis for activation maps

In this section, we explore the quality of voxel activation maps for the fMRI
data reconstructed using the above methods. To this end, first pre-processing
of fMRI data is done in SPM. In this stage, fMRI data are realigned for re-
moval of motion artifact. Smoothing is also a standard pre-processing step that
is generally carried out to improve signal-to-noise ratio (SNR). It is one of the
preprocessing step before statistical analysis in fMRI literature. This helps with
denoising of data and hence, SNR. This improves sensitivity of the analysis and
better activation maps are obtained. Since the proposed reconstruction method
inherently denoises the data, we claim that this step is not needed with the
proposed MCwSR method. In order to validate this claim, we show time-series
profile of some voxels of 18th slice of dataset-1 reconstructed with MCwSR
method in Fig.9a. Fig.9b shows time-series profile of some voxels of 16th slice
of dataset-2. This figure presents time-series profiles of fully sampled and recon-
structed fMRI data (using the proposed MCwSR method). It is observed that
the reconstructed time series profile is a denoised version of the fully sampled
data validating our claim.

In order to further assess this claim and ensure that we do not loose infor-
mation related to activation detection, we compute activation maps on fMRI
data of dataset-1 reconstructed using different methods. After preprocessing,
fMRI data is fitted to four input block conditions as mentioned in [19]. These
conditions are false belief story, false belief question, false belief photo story,
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Figure 9: Voxel time series profiles:
(a) dataset-1 Middle slice 18, (b) dataset-2 Middle slice 16

and false belief photo question. We computed task-related activation on recon-
structed fMRI data using general linear model (GLM).

GLM is a univariate method used for activation detection on task based
fMRI data [32]. In this method, a linear model of applied stimuli is fitted to
each voxel time series resulting in a set of voxel specific parameters. These
parameters can be used to form statistical parametric maps (SPMs) or contrast
maps or activation maps [33]. We generated these activation maps using SPM8?2
that is a standard fMRI statistical analysis toolbox for MATLAB software. The
resulting maps are thresholded using p-value (p < 0.05) wherein clusters with
atleast 12 voxels are considered active. Maps are generated on reconstructed
data and compared with maps of fully sampled ground truth data.

As stated earlier, if the reconstruction method does not incorporate denois-
ing, smoothing is required as a pre-processing step in order to improve SNR
and hence, have correct activation detection. Thus, we present activation maps
with the original fully sampled (noisy) data without smoothing, original fully
sampled data after smoothing (Full Width Half Maximum, FWHM, 6mm), and
with different accelerated (12 radial lines, 6.065 acceleration factor) reconstruc-
tion methods without smoothing in Fig.10.

On visually comparing these activation maps, we observe that the activation
map with accelerated McwSR method (without smoothing) in Fig.10(i) is similar
to that of fully sampled data with smoothing as shown in Fig. 10(b). This result
show that proposed MCwSR reconstruction method has an inherent ability to
improve SNR, and hence, activation maps of reconstructed data is close to fully
sampled data with smoothing as shown in Fig.10 (b). This is an added advantage
of the proposed MCwSR reconstruction method. Since MCwSR, modified k-t
FASTER, and CSFD methods are performing better compared to other, we have

2http:/ /www.fill.ion.ucl.ac.uk/spm/
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Figure 10: Activation maps in coronal (row-1), sagittal (row-2), and axial (row-3)
planes on Dataset-1 using:

(a) Original (noisy) fully-sampled data, (b) Original fully-sampled data with FWHM
6mm smoothing, (c)-(i) on accelerated (12 radial lines based) reconstructed data
using (c) k-t FASTER, (d) Proposed Modified k-t FASTER, (e) LR+S, (f) CSTD

(BPDN), (g) CSWD, (h) CSFD, (i) Proposed MCwSR

highlighted these results via white circles in Fig. 10d (modified k-t FASTER),
Fig. 10h (CSFD), and Fig. 10i (MCwSR). The activation shown in red in the
circled area in Fig. 10b seems to be lost in Fig. 10d and Fig. 10h, while it is
preserved in Fig. 10i. This again validates our claim that the proposed MCwSR,
reconstruction method also improves SNR without loosing activation. Further,
we observe that false positives are detected with CSTD (BPDN), CSWD, k-
t FASTER, and LR+S methods that can yield misleading findings on fMRI
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data. Thus, this paper also demonstrates a way of validating the reconstruction
method on fMRI data.

6. Conclusions

In this paper, we have supported the literature of accelerated fMRI re-
construction by proposing a new fMRI reconstruction method. The proposed
method exploits both sparsity and low-rank to improve fMRI reconstruction
accuracy and is named as Matrix completion with Sparse Recovery (MCwSR).
This method is implemented via Split Bregman algorithm. We compared the
performance of the proposed method with some methods including k-t FASTER,
LR+S, CSTD or BPDN, CS with wavelet sparsity, CS with Fourier sparsity,
and modified k-t FASTER on two real fMRI dataset. Our results show that the
proposed MCwSR method yields the most faithful reconstruction both quantita-
tively and qualitatively. Further, MCwSR method’s performance is consistently
good at very low sampling ratios.

In addition, this proposed method is able to preserve the voxel activation
map of fMRI data that is not observed with any other existing method. Rather,
most of the existing methods provide false activation that can yield misleading
findings on fMRI data. This establishes the significance of the proposed method.
In addition, this paper has provided a mechanism to validate the reconstruction
quality of an fMRI reconstruction method via building brain activation maps.
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