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A B S T R A C T

Analysis of electroencephalogram (EEG) signals to determine the nature of visual stimuli, being experienced
by a person, is an active area of research. It is key to understand the link between human brain and
behavior, especially for brain computer interface (BCI) applications and rehabilitation of patients suffering with
neurological disorders. In this research, we conducted an experiment comparing two stages of visual processing,
determined distinct EEG signals associated with them, and subsequently used a classifier to distinguish the two
stages. EEG data was collected using a feature-binding experiment that required subjects to detect changes in
color and shape binding after 100 ms and after 1500 ms. The two stages denoted by these study-test intervals
were determined using features extracted from both time and frequency domains. These were used to separately
train various machine learning classifiers. The time–frequency domain representation of the signal was used
to train a convolutional neural network (CNN). Promising results were obtained. Thus, the contribution of the
paper is two-fold. Firstly, we carry out EEG data analysis using deep learning to classify whether the EEG trial
belongs to 100 ms class or 1500 ms class. Secondly, we connect these results to predict different stages of visual
processing in human brain and visual feature binding. Thus, deep learning can help us predict the stages of
visual processing and, hence, unlock important insights regarding the temporal dynamics of brain functioning.
This can help in building relevant tools for BCI applications such as neuro-rehabilitation of subjects suffering
impairments in visual feature binding.
1. Introduction

Visual feature binding is the brain process that integrates various
features such as color, shape, location, size, orientation, etc. to form
a coherent object [1–4]. Brain analyzes the incoming sensations and
codes information about an object in different brain areas. Discrim-
ination of individual features and subsequent integration of separate
features into a unified representation of the object is basic to higher
order information processing. Whether binding is automatic and instan-
taneous, or is a resource demanding process that takes place over a
period of time, is still not a settled question. Inter alia, this question
asks whether all features are bound together in the incipient stages of
visual processing and then the object is maintained only in the visual
working memory (VWM), or whether the binding process continues
such that the representation of the object is steadily and gradually
refined (and strengthened) in VWM. The answer to this question is
practically important because patients with brain damage due to head
injuries, stroke, etc. often show alterations in feature binding. Deficits
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in feature binding are also presumed to be an early cognitive marker
of chronic disorders such as Alzheimer and Schizophrenia [5–8]. De-
signing rehabilitation tools and programs for such patients using brain
computer interface (BCI) requires a precise delineation of the character-
istics of different stages of feature binding. High temporal resolution of
electroencephalography (EEG) signals makes them particularly useful
in the study of information processing in human brain. Thus, it was of
interest to study the electrophysiological correlates of binding at two
distinct stages of visual processing in order to ascertain whether we can
use this information to train a machine learning classifier.

Most studies of feature binding use a change detection task at the
molar level of cognitive behavior. The task presents two visual displays
to the participant who has to decide whether there is a change in
the two displays. The first is the study display, which the participants
have to memorize. In the intervening period, either a masking or
blank display of varying study-test intervals is presented. Then, the
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second display, i.e., the test display is presented, which is either same
as the first one or is slightly different. The difference is present in
the target stimuli, while the rest are the distractors. Rensink [1] has
extensively reviewed the varieties of these archetypal descriptions and
their implications. Generally, the difference in the change detection
task, if it occurs, is the addition of a new stimulus, deletion of an
old one, or a swap in the already presented stimuli [1]. The present
research uses only the last kind of change, a swap between the two
stimuli.

The swap task was introduced by Wheeler and Treisman [2] specif-
ically to study bindings. It is not possible to perform this task by
remembering which features were presented, for all the features appear
in the study as well as the test display. It is essential to remember how
the features were combined to find which ones swapped and do the
task successfully. Alvarez and Thompson [9] have used the term feature
witch detection to describe this task. Their work has also shown that
hough this task under-estimates the binding capacity of VWM, it is an
fficient paradigm for studying the factors affecting the fragile nature
f bindings. The task is particularly suited to the present research,
or it yields a single dependent measure of the differences in various
tages of processing. By simply manipulating the study-test interval,
ne can change it from a test of iconic memory storage to a test of
isual short-term memory (VSTM).

Our focus was to study the binding of two surface features, namely,
olor and shape. Since location serves as a powerful cue for binding,
e decided to randomize locations from study to test. This variant of

he swap detection task has been used earlier [3,4,10,11]. The length
f the study test interval was manipulated to be either 100 ms or
500 ms. These study-test intervals denote two different stages of
isual processing: initial processing in iconic memory or visual sensory
emory (VSM) and post perceptual processing in VWM [12–14]. After

he stimulus vanishes, visual system retains almost all the information
bout the stimulus displayed as an icon until 100 ms (and a little
hile thereafter) as reported in seminal experiments by Sperling [14,
5]. VSM, however, is not only about exhaustive storage. Rather, the
patiotopic representation is continuously worked upon and refined
ntil the relevant information is transferred into the limited capacity
WM [16]. Researchers also opine that when testing at 1500 ms after

he removal of the initial stimulus, we are delving into VSTM or
WM. Both the terms VSTM and VWM are often used interchangeably,
lthough former implies limited capacity store, whereas latter implies
oth storage and processing. It is assumed that no icon would survive
ntil 1500 ms because 300 ms or less is the usual estimated iconic
emory [17–19].

In essence, this research was designed to test the effect of these two
tudy-test intervals (representing two distinct stages of visual process-
ng) on feature binding performance, extract the characteristic features
f underlying EEG signals in these two experimental conditions, train
classifier using deep learning architecture, and test whether the clas-

ifier reliably predicts the stage of processing in human participants.
n the first instance, it seems that performance should get better when
he study test interval increases from 100 to 1500 ms. Among others,
he time-based resource-sharing model of working memory suggests
hat increasing the study-test interval should improve performance as
t allows more time for proper encoding and consolidation of stim-
li [20,21]. However, it is important to remember that forgetting also
ccurs over time. Information in iconic memory decays rapidly and the
imited capacity VSTM can hold only a limited number of items in the
tore. Hence, new learning quickly knocks out the old learning from the
STM. To the extent that change detection is aided by iconic memory,
erformance will be better at 100 ms than at 1500 ms. Conversely,
conic memory may actually hamper change detection performance
f the test display does not match what is being held in the iconic
emory. Thus, it is of interest to compare the effect of the two study-
2

est intervals at the behavioral level, besides studying the underlying
EEG data associated with the two study-test intervals in order to train
machines.

Olson et al. [22] tested the retention of single feature objects (object
or location) and binding (of object and location) in controls and amnesi-
acs. They manipulated study-test intervals at two levels, one second and
eight seconds. The main effect of study-test interval was not significant,
although performance decreased in the longer interval. In the next
experiment, they equated the memory load by intermixing the location
and object identity trials. Now, the subject did not know what he would
need to report in the test display. In this particular experiment, the
main effect of study-test interval was significant manifesting poorer
performance at longer interval.

Logie et al. [3] compared color–shape binding at regular study-
intervals, 0, 500, 1000, 1500, 2000, and 2500 ms, keeping the locations
of the stimuli either same or randomized from study to test. When loca-
tions were same, performance gradually decreased from 0 to 1500 ms
and then stabilized. However, when locations were randomized, there
was a slight but significant increase in performance from 0 to 1500 ms,
after which performance was similar to that of unchanged locations.
This pattern of results suggests that location is crucial for initial detec-
tion and encoding of feature bindings but that bound features might
be stored independently of location after those representations are
transferred to VSTM as also noted earlier [23].

The above result was replicated and substantiated in subsequent
studies [10,11]. Using the same task, Jaswal and Logie [10] also tested
the effect of presentation time and study-test intervals on sequentially
presented stimuli for color shape binding. They manipulated the study-
test interval at two levels, 0 and 2000 ms, and found better performance
at 2000 ms than 0 ms [10]. The slight increase in performance from 0
to 1500 ms, when locations are randomized from study to test, most
likely occurs because the spatiotopic iconic memory representation of
the initial display hampers change detection in the test display at 0 ms.
In contrast, at 1500 ms, there is no detrimental effect of the location
based iconic representation as location has no special status in VSTM
for bindings. Hence, performance is better.

Many theories and experiments confirm that location is a special
feature. The Feature Integration Theory (FIT) suggests that various
features are initially registered in parallel [24]. As attention is directed
to a point in space, all information at that point is integrated. Thus,
all identified features are mapped onto a master map of locations
and hence, spatial attention precedes and guides attention to other
features [25]. Their seminal experiments showed that participants were
better at remembering locations than other object features and focusing
attention on a particular spatial location then allows the features at that
location to be bound together so that an item can be identified [2].

The Guided Search model also ascribes a special place to loca-
tions [26]. Experimental studies show that location is such an over-
whelming cue for encoding stimuli and their features, that it is in-
variably used if present [27–32]. Studies from cognitive aging also
postulate ‘location’ as a special feature linking impairments of binding
when location is one of the features to be bound (e.g., location–shape)
but being impervious to cognitive aging when binding does not involve
location (e.g., shape–color) [33–36]. Thus, location plays a key role
in the formation of bindings at the time of perception. It is reported
that location aids retinotopic as well as spatiotopic representation of
information in iconic memory, even if the stimuli vanishes [37–40].
Nevertheless, there is also little doubt that the importance of location as
a feature diminishes over time in visual processing as shown in an early
study [13]. This result has been replicated in several studies with differ-
ent kinds of stimuli [12,27,41,42], and particularly, for bindings [3,10,
11,23]. Our experimental task randomizes locations from study to test.
Therefore, we expect that change detection performance will be lesser
at 100 ms because the iconic memory hampers performance, whereas
it will have no effect at 1500 ms where performance depends only on

VWM capacity.
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We also studied the electrophysiological activity in the brain, while
the task is performed. Electroencephalography (EEG) is a non-invasive
technique that uses multiple electrodes placed on the scalp to measure
the electrical activity generated in the brain by the cerebral cortex
nerve cells. EEG signals can broadly be classified into two categories:
oscillatory signals and event related potentials (ERPs). Oscillatory sig-
nals are those which are related to the regular working of the human
body such as digest ion, breathing, blood flow, etc. whereas an ERP is
a measured brain response that is a direct result of a specific sensory,
cognitive, or motor event [43]. Several previous studies have used EEG
signals to identify and study ERPs related to various cognitive tasks in
an effort to better understand the nuances of that particular cognitive
task. EEG signals have also been combined with change detection
tasks to better understand Parkinson’s disease [42] and the working
of VSTM [44].

EEG signals have been increasingly paired with deep learning and
machine learning techniques in order to do various tasks such as
predicting human response [45], representation of human visual fea-
tures [46–49], learning representations [50], detecting emotions [51],
and classifying motor imagery signals [52]. EEG signals are also used
in the development of BCI systems, where external devices are con-
trolled through thought-commands by real time automated analysis of
EEG signals [53–58]. Hyperscanning is yet another interaction method
that uses a combination of BCI and Virtual reality [59]. Interesting
studies have been done exploring the use of single electrode for BCI
applications [60]. Similarly, functional brain connectivity is learned
and compared for population suffering with brain disorder against the
healthy population using fewer electrode portable EEG machines [61].
All this research is being carried out with the aim to build solutions
to support people with numerous physical or mental disabilities or to
assist in living healthy life-styles.

These systems are majorly based on predictive analysis where hu-
man action is predicted through real time analysis of the EEG signals.
Although BCI systems are not currently used to assist people with
purely psychological disorders, their potential use in behavioral ther-
apy and/or symptomatic relief by managing the patients’ environment
is not an empty dream. However, the first step in this process is the
ability to accurately predict the environmental signals around a person
by studying his/her EEG responses. Our major aim in this study is to
explore whether the study test intervals in a change detection task,
denoting the two stages of visual processing, could be accurately pre-
dicted by the analysis of EEG signals recorded during the experiment.
Secondly, we have demonstrated the use of deep learning on the visual
processing and working memory related EEG dataset. Although deep
learning is being used increasingly in various applications, we have not
encountered a similar use so far in cognitive research.

2. Materials

2.1. Apparatus

Subjects were seated in front of a 14′′ desktop screen at a distance
of approximately 1 m. EEG data was collected at a sampling rate of
256 Hz using the RMS Maximus portable EEG machine1 keeping 21
electrodes on the scalp with Ag-Cl conductive paste in accordance with
the international 10–20 system as shown in Fig. 1. The ground electrode
was fixed at the nasion position while the reference electrode was
placed 10% above the former.

1 http://www.rmsindia.com/neurology.html.
3

Fig. 1. International 10–20 system for application of scalp electrodes.
Source: https://en.wikipedia.org/wiki/10-20_system_(EEG).

2.2. Experiment design and data collection

The experiment was conducted in accordance to previous experi-
ments conducted in various studies [3,10,11]. The experimental pro-
tocol is shown in Fig. 2 and is described as follows. Subjects were
shown a target and a test screen with a blank screen interspersed
between them. The target and test screens consisted of four stimuli
at random locations consisting of four shapes (triangle, parallelogram,
plus and horseshoe) in four colors (blue, green, red and yellow). The
experiment involved display of a target screen with four differently
shaped objects in different colors at random locations on the screen,
followed by a blank screen after which a test screen displayed the same
objects at random locations having the same or randomly changed color
from the target screen. The target screen was displayed for 200 ms,
blank screen for a fixed duration of either 100 ms or 1500 ms and
the test screen was response driven. Subjects responded by pressing
keys ‘s’ and ‘d’ if the test screen was similar or different from the
target screen, respectively. Each subject was initially familiarized with
the experiment by 25 practice trials after which they were tested on
96 trials. Location was randomized across all trials. The color–shape
bindings in the target and test screens were same in 50% of the trials.
Half of the trials showed a blank screen of 100 ms while the other half
showed blank screen of 1500 ms. The two different lengths of the blank
screen were randomly mixed within the 96 trials conducted for each
subject. For each trial of a particular blank screen time, color–shape
bindings were kept same in target and test screen for half of those
trials. To give a brief estimate of the time duration of the experiment,
we present the total time taken to complete 96 trials by a randomly
chosen subject as follows: (0.1 s fixation time + 0.2 s target image time)
x 96 trials + 0.1 s blank screen time x 48 trials + 1.5 s blank screen
time x 48 trials + 117.5 s response time (of 96 trials, this response time
varies from trial to trial) = 223.1 s = 3.7 min (approximately) or around
5.7 min overall including the time taken in the practice trials.

Subjects were asked to detect changes in color–shape binding be-
tween the target and test screens while inhibiting location as a feature.
The experimental variable that was selected to be predicted during the
test was the length of display of the blank screen between the target
and the test screens. We also conducted analysis to confirm that the
FIT was upheld during the experiment.

2.3. Preprocessing

EEG data was first filtered using a simple band-pass filter available
in the EEGLab software [62] itself between 1 Hz and 60 Hz in order
to remove undesired frequency band signals. Collection of EEG data
is a non-invasive technique, as a result of which signals captured

http://www.rmsindia.com/neurology.html
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Fig. 2. Single trial of the experiment (Note: Stimuli are not drawn to scale).
by a particular electrode on the scalp are a combination of signals
originating from different regions of the brain in the vicinity of the
position of that electrode. Thus, there is a need to separate these
components in order to better understand the captured EEG signal.
Independent and uncorrelated temporal components were obtained
using independent component analysis (ICA). Twenty one independent
components were obtained from ICA as shown in Fig. 3. These 21
components also consisted of various brain related artifacts such as
artifacts related to eye-ball movement, muscle movement, heartbeat,
etc. For each subject, we studied the ICA component time-series, 2D
and 3D scalp maps and observed the changes in the EEG spectrum
to determine the presence of said artifacts. Electrooculogram (EOG)
and Electromyogram (EMG), which are artifacts related to eye-ball
movement and muscle movement, respectively (shown in Fig. 4), were
removed to obtain 19 individual components. After ICA, experimental
data of each subject was segmented into individual trials to obtain 96
different segments, each containing 19 individual components. Thus,
we collected 96 different labeled segments for each subject which were
further used to classify and predict the study-test intervals (implying
different stages of processing).

3. Methods

EEG data were visualized and processed using EEGLab [62] that
has been developed by the Swartz Center for Neuroscience in Matlab
R2016.

3.1. Behavioral data analyses

The accuracy with which subjects detected the change in color–
shape bindings was analyzed for both 100 ms and 1500 ms blank
screen intervals using d-prime scores. The d-prime is a measure of
accuracy employed on the basis of the signal detection theory which
helped ensure that response bias was considered while calculating the
accuracy with which change in binding was detected [63]. These scores
were calculated for each subject individually in the two experimental
conditions.

3.2. Feature extraction

The classification and prediction of study-test intervals (implying
different stages of processing) was done using 14 state-of-the-art ma-
chine learning classifiers that were built on time-domain and frequency-
domain features extracted from each of the remaining 19 components
for each trial.
4

Table 1
EEG time domain features. (𝑧[𝑛] is the analytical signal obtained using the Hilbert
Transform of a real discrete time EEG signal 𝑥[𝑛], 𝜇 is the mean of 𝑧[𝑛], and 𝜎 is the
standard deviation of 𝑧[𝑛].)

(1) Features based on statistical moments
∙ First and second moment of EEG signal. Aarabi et al. [67] and Löfhede et al.
[64].
𝐹(𝑡1) = 𝜇 = 1

𝑁
∑𝑁

𝑛=1(|𝑧[𝑛] − 𝜇|)

𝐹(𝑡2) = 𝜎 =
√

1
𝑁

∑𝑁
𝑛=1(𝜇 − |𝑧[𝑛]|)2

∙ Normalized moments: Third and fourth moments of EEG signals [64,67].
𝐹(𝑡3) =

1
𝑁𝜎3

∑𝑁
𝑛=1(|𝑧[𝑛]| − 𝜇)3

𝐹(𝑡4) =
1

𝑁𝜎4

∑𝑁
𝑛=1(|𝑧[𝑛]| − 𝜇)4

(2) Features based on amplitude
∙ Median absolute deviation of EEG amplitude [64]
𝐹(𝑡5) =

1
𝑁

∑𝑁
𝑛=1(|𝑧[𝑛] − 𝜇|)

3.2.1. Time-domain features
Five discriminating features were extracted from the time-domain

representation of the collected EEG and pre-processed EEG signal.
Table 1 describes the relevant time-domain features that were also
identified as being significant. The features selected are based upon
amplitude such as median absolute deviation [64–66] and statistical
moments such as mean, standard deviation, skewness, and kurtosis [64,
67] of the collected EEG signals. As these features were extracted from
each of the 19 components of each trial, there were a total of 95
(19 × 5) time domain features that were extracted for each trial of each
subject. All features were standardized after extraction by subtracting
the mean and dividing by the standard deviation.

3.2.2. Frequency-domain features
A total of five frequency domain features were extracted from the

frequency domain representation of the collected and pre-processed
EEG signal. The frequency domain representation was obtained using
Fourier transform. Table 2 described the discriminant and relevant
frequency-domain features that have been identified. These features
were based on spectral information of EEG signals such as average
energy, spectral centroid, spectral flatness, spectral roll-off and spectral
entropy [64,66,67]. As these features were extracted from each of the
19 components of each trial, there were a total of 95 (19 × 5) frequency
domain features that were extracted for each trial of each subject. All
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Fig. 3. 3-D scalp map of EEG Data.
Fig. 4. Independent components of EEG data. Component 16 (EMG) and component 1 (EOG) were removed being artifacts.
features were standardized upon extraction by subtracting the mean
and dividing by the standard deviation.

3.3. Prediction/estimation of study-test interval

The estimation of study-test intervals (implying different stages of
processing) was carried forward by training state-of-the-art machine
learning classification models using the features in Tables 1 and 2. The
response of the subject and correctness of the response were added
as two additional features. Response of the subject indicates whether
the subject pointed out a change or a no change in the test and study
screens. Correctness of the response indicates whether the subject’s
response was correct. Both these features were added to both the time
and the frequency domain features. A total of 14 machine learning
classifiers that are listed in Table 3 were used. They belonged to five
different families of classifiers. The classifiers were used separately on
time domain and frequency domain features for each subject. Thus,
5

a total of 1512 simulations (14 classifiers x 54 subjects x 2 types of
features) were conducted.

3.4. Deep learning: Convolutional Neural Network (CNN)

3.4.1. Data preparation
In order to train the proposed CNN, each trial of every single subject

was converted into a three-dimensional matrix by taking the short-term
Fourier transform (STFT) and stacking the different sections on top of
each other as explained below. STFT is windowed Fourier transform
used to determine the frequency content of signal in short duration.
For this, a signal is divided into shorter segments of equal lengths and
Fourier transform of each segment is computed. In our data, the length
of the individual trial of a particular subject is different because it is
equal to the time taken by the subject to press a response key that is
variable from trial to trial. Thus, individual trials are represented by
two-dimensional matrices of size (19, 𝑁) each, where 19 represents
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Table 2
EEG frequency-domain features. 𝑍[𝑘] is the Fourier transform of the analytical signal
[𝑛] of a real discrete time EEG signal 𝑥[𝑛]. 𝑀 corresponds to the maximum frequency

of the signal.
(1) Features based on power spectrum
∙ Average energy [66,67].
𝐹(𝑓1) =

1
𝑁

∑𝑀
𝑘=1 |𝑍[𝑘]|2

(2) Features based on spectral information
∙ Spectral centroid: Average signal frequency weighed by magnitude of spectral
centroid

𝐹(𝑓2) =
∑𝑀

𝑘=1 𝑘|𝑍[𝑘]|
∑𝑀

𝑘=1 |𝑍[𝑘]|

∙ Spectral flatness: Indicates smoothness of frequency distribution [64].

𝐹(𝑓3) = 𝑀(
∏𝑀

𝑘=1 𝑍[𝑘])
1
𝑀 (

∑𝑀
𝑘=1 𝑍[𝑘])−1

∙ Spectral roll-off: Spectral Concentration below threshold 𝜆 [64]
𝐹(𝑓4) = 𝜆

∑𝑀
𝑘=1 𝑍[𝑘]

The value of 𝜆 was equal to the frequency at which energy of the signal goes
below 0.8 times of the total energy.

(3) Features based on entropy
∙ Spectral entropy: measure of regularity of power signal [66]
𝐹(𝑓5) =

1
𝑙𝑜𝑔(𝑀)

∑𝑀
𝑘=1 𝑃 (𝑍[𝑘])𝑙𝑜𝑔(𝑃 (𝑍[𝑘]))

Table 3
Machine learning classifiers employed.

(I) Bayes classifiers
1. Naive Bayes
2. Bayes Net

(II) Traditional Classifiers
3. Binary SVM with Stochastic Gradient Descent (SGD)
4. Binary SVM with Sequential Minimum Optimization
5. Simple Logistic Regression

(III) Lazy classifiers
6. K-Nearest Neighbor

(IV) Rules based classifier
7. JRip

(V) Trees
8. Decision Stump
9. Hoeffding Tree
10. J-48 Tree
11. Logistic Model Tree (LMT)
12. Random Forest
13. Random Tree
14. REP Tree

the number of channels obtained after pre-processing (Section 2.3). 𝑁
s dependent upon the length of the trial. For example, if the trial was
.5 s long, the value of 𝑁 would be 256 × 2.5 = 640 corresponding to

the sampling frequency of 256 Hz. Some snapshots of STFT are shown
in Fig. 5.

In order to take STFT of individual trials, each trial was divided
into segments of 100 points each giving 𝐿 number of matrices of size
19, 100) where the value of 𝐿 depends on 𝑁 (𝐿 is the maximum
nteger value of 𝑁/100). After dividing the trial into segments, Fourier
ransform of each segment was taken to yield 𝐿 matrices of size (19,
1) that were stacked on top of each other to yield three-dimensional
atrix of size (19, 51, 𝐿) for each trial. For each subject, there were a

otal of 96 trials. In order to ensure homogeneous input to CNN for a
articular subject, the depth of the matrices of each trial was padded
ith zeros till the size of each trial became (19, 51, 𝐿𝑚𝑎𝑥) where 𝐿𝑚𝑎𝑥

s the maximum value of 𝐿 among all trials of that particular subject.
his process of data preparation for CNN is shown in Fig. 6.

.4.2. CNN architecture
We designed a CNN architecture with four convolutional layers
6

ollowed by four densely connected layers as shown in Figs. 7 and 8
able 4
onvolution layers of the proposed architecture.
Layer name Input size Kernel size Stride #Filters

Conv1 19,51,L𝑚𝑎𝑥 3 × 3 × L𝑚𝑎𝑥 1 L𝑚𝑎𝑥
MaxPool1 16,48,L𝑚𝑎𝑥 4 × 4 1 –

Conv2 15,14,L𝑚𝑎𝑥 2 × 2 × L𝑚𝑎𝑥 1 50
MaxPool2 13,45,40 4 × 4 1 –

Conv3 12,44,50 2 × 2 × 50 1 80
MaxPool3 10,42,80 4 × 4 1 –

Conv4 9,41,80 2 × 2 × 80 1 100
MaxPool4 8,40,100 2z2 1 –

Table 5
Dense (fully connected)∗ layers of the proposed architecture.

Layer name Input size Output size Dropout

Dense-1 27 300 50 0.3
Dense-2 50 20 0.3
Dense-3 20 10 0.3
Dense-4 10 1 0

* The output of the convolution layers was flattened before feeding to the dense layers.

and explained in Tables 4 and 5. CNN is a class of multilayer feed
forward neural networks that contain very few parameters compared
to the conventional fully connected neural networks [68]. In a CNN
architecture, we have three types of layers: (a) convolutional layers that
have neurons with small visual field, e.g. say 3 × 3, where the visual
field implies that the input to the current neuron is being received as
the weighted linear combination of (3 × 3 = 9) nine neurons of the
revious layer. The weights of these 3 × 3 neuron connections are
hared by all the neurons of that particular convolutional layer and is
lso called as a 3 × 3 filter or kernel. This weighted linear output is
assed through the non-linear activation function of the neuron. Often,
estricted linear activation (ReLU) is used as the activation function.
b) the max pool layer: this layer acts as the subsampling layer that
s placed after the convolutional layer, and (c) fully connected layer:
hese layers are added just before the last softmax layer.

Same activation function was used for each layer of the neural
etwork except for the last layer. The last (output) layer of the network
ad an activation of sigmoid. The rest of the network was tested on
wo different activation functions: ReLU and tan hyperbolic activation
unctions. Difference in performance achieved by the two functions was
ubsequently studied. The input image size and the number of filters of
he first convolutional layer were different for each subject and was in
ccordance with the value of 𝐿𝑚𝑎𝑥 for that subject.

.4.3. CNN training
The initialization of weights during training was done using ‘glorot

niform’ initialization [69]. The subsequent training was conducted
ver 100 epochs at a learning rate of 0.001. Binary cross-entropy
oss was chosen as the loss function and ADAM optimizer [70] as
he optimizer of choice. The values of exponential decay rate for
he first and second moment of ADAM optimizer were set as 0.9
nd 0.999, respectively. The number of trainable parameters varied
etween 1,420,041 to 1,507,341 depending on the subject on whose
ata the CNN was trained.

. Results and discussion

.1. Behavioral data

Accuracy of change detection was the primary measure of interest
n the behavioral data. A paired 𝑡-test showed significant difference in
he average d-prime scores for 100 ms and 1500 ms study-test intervals
𝑡 = 4.174, 𝑑𝑓 = 53, 𝑝 < 0.001) with the average/mean score being
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Fig. 5. Visual representation of EEG signals in the time–frequency domain. Images shown belong to different subjects.
Fig. 6. Visual representation of changing a single trial into an STFT image to be fed to the CNN. 𝐿 is the maximum integer value of 𝑁/100. 𝐿𝑚𝑎𝑥 represents the depth of the
longest trial.
lower for 100 ms (mean = 0.863, standard deviation = 0.497) than
for 1500 ms (mean = 1.243, standard deviation = 0.497). The lower
score for 100 ms as compared to 1500 ms has been observed in several
previous studies which used this experimental task [3,10,11,23]. The
presentation of multiple objects utilizes the powerful cue of location
and allows configural encoding as shown by many studies of unifea-
ture objects [27,71]. This relational encoding is preserved in iconic
memory that was being tested at 100 ms, the icon being a spatiotopic
representation of the stimuli that were seen [14,15].

The importance of location in binding has been emphasized in the
FIT [24,25,72,73] as well as in the guided search model [26]. FIT
suggested that binding is mediated by the links of separate features
to a common location [24]. Treisman and Sato [25] propose that a
‘‘master map’’ of locations exists in our brain. Attention selects all the
features associated with a particular location, and works as glue to
bind those features [25]. Neuroscientists have found the evidence for
such a master map. Several studies have also shown that activity in the
retinotopically organized sub-regions of the visual and parietal cortex
are critical for VSTM storage [74]. Studies also show that bindings are
more vulnerable to location change and suggest that location plays a
7

central role not only in encoding but also in maintenance and retrieval
of bound objects [3,23,28,30].

As suggested by the feature integration theory [24,25] and the
guided search model [26], location plays a key role in feature binding
at the time of perception. In fact, other features are probably addressed
through the master map of locations which exists in the brain. Features,
and the object representations that they form, are inevitably encoded
as a configuration. Thus, when the experimental task randomizes loca-
tions, the relational encoding of stimuli is disruptive of performance.
Nevertheless, as the task is to remember only the binding between
colors and shapes, gradually, locations, being irrelevant to the task, are
deleted from VSTM. At 1500 ms, locations are no longer retained by
participants in the object representations to have a disruptive effect
on performance. The memory for color–shape bindings in VSTM at
1500 ms does not involve locations and thus performance is not as
adversely affected by the randomization of location between study and
test.

Results also suggest that although feature binding is a continuous
process of consolidating relevant features and removing the irrelevant
features from object representations, there are significant and reliable
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Fig. 7. Visual representation of the convolution layers of the proposed network architecture.
Fig. 8. Visual representation of the fully connected layers of the proposed network
architecture.

differences in the state of brain functioning at 100 ms and 1500 ms.
Different factors dominate brain at these different times, with associ-
ated behavioral as well as electrophysiological differences. Thus, it is
possible to study the brain EEG signals to predict whether the brain is
currently processing stimuli at 100 ms or 1500 ms.

4.2. Estimation of stages of processing using study-test intervals

Results for the estimation of study-test intervals (implying different
stages of processing) were generated by averaging results obtained
from 8-fold cross-validation for every subject in every classifier used.
The best performance among the 14 machine learning classifiers using
both frequency-domain and the time domain-features was noted and
compared with the performance obtained using the proposed CNN
architecture as shown in Table 6. For the CNN, the test accuracy is
reported from each of the eight classifiers (corresponding to 8-fold cross
validation) on the held-out fold on the 100th epoch. Results of CNN
are calculated by considering the results of all the eight classifiers on
their respective test fold. A summary of results showing the number of
subjects on whom the best performance was obtained via the proposed
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CNN model vis-à-vis t-domain feature based or f-domain feature based
models is shown in Table 7.

Machine learning classifiers showed better results when trained
using the frequency domain features as compared to time domain
features for all but one subject. This is observed due to the differences
in 𝛼, 𝛽, and 𝛾 rhythms in EEG signals [75]. These rhythms contain a lot
of information regarding the ongoing cognitive processes. The presence
of these rhythms and subsequently the information contained in them,
is better represented in the frequency domain than the time domain
and hence, features extracted from the frequency domain show better
results.

As seen in Tables 6 and 7, the proposed CNN architecture with tanh
activation shows peak performance on 45 subjects and with ReLU acti-
vation shows peak performance on 11 subjects. Overall, the proposed
CNN architecture shows peak performance for all but 3 subjects. The
highest accuracy achieved with the proposed CNN is 100% for subject
number 26. This shows extremely promising results using deep learning
based architecture in EEG signal processing.

4.3. ReLU versus tan hyperbolic activation functions

The tan hyperbolic activation function (tanh) outperforms ReLU in
42 out of 54 subjects, while ReLU outperforms tanh activation on 6 out
of 54 subjects. The remaining 6 subjects show equal performance with
both tanh and ReLU activation functions. The ReLU activation function
is a part of the family of non-saturated activation functions and is one
of the most actively used activation functions in all of deep learning
literature [76–78]. ReLU is a piecewise linear function that clips the
negative part to zero and retains the positive part as it is. It has been
noted in the literature to show high performance while working with
image data.

The tanh activation function is a bounded function that is a part
of the saturated activation functions family with value saturating to
+1 for positive input and −1 for negative input. The overwhelming
results obtained when using tanh activation function as compared to
ReLU activation function can be attributed to the way in which both
functions deal with the data. As seen from the STFT plots in Fig. 5,
most of the brain activity is observed in lower frequencies. In fact, in



Biomedical Signal Processing and Control 70 (2021) 102996N. Mathur et al.
Table 6
Classification accuracy with different classifiers.

Subject t-domain features
(best performance)

f-domain features
(best performance)

Proposed CNN
(with ReLU activation)

Proposed CNN
(with tanh activation)

1 65.27% 78.125% 80.49% 80.49%
2 67.021% 77.89% 78.98% 81.91%
3 80% 85.42% 97.92% 96.88%
4 72.63% 86.46% 84.32% 88.54%
5 70.53% 92.71% 92.71% 94.79%
6 74.74% 89.58% 91.67% 93.75%
7 65.26% 72.92% 57.29% 72.92%
8 65.26% 90.625% 74.53% 94.79%
9 66.315% 76.042% 85.42% 88.54%
10 70.21% 85.26% 90.44% 86.17%
11 63.16% 84.375% 82.18% 90.62%
12 73.68% 85.42% 93.75% 93.75%
13 67.37% 81.25% 76.04% 78.12%
14 74.74% 80.21% 68.75% 80.21%
15 78.95% 88.54% 93.75% 93.75%
16 66.32% 93.75% 95.83% 97.92%
17 72.63% 81.25 94.79% 95.83%
18 74.75% 89.58% 90.63% 92.71%
19 83.16% 89.58% 94.79% 95.83%
20 63.16% 83.34% 75.00% 84.37%
21 75.79% 85.42% 90.62% 93.75%
22 64.21% 71.875% 85.42% 86.46%
23 67.37% 88.54% 78.60% 89.58%
24 74.74% 85.42% 95.83% 93.75%
25 72.63% 88.54% 76.04% 89.58%
26 80% 95.83% 100% 100%
27 75.79% 86.46% 90.63% 92.71%
28 63.16% 72.92% 73.96% 79.17%
29 72.63% 81.25% 88.54% 89.58%
30 73.68% 89.58% 87.03% 89.58%
31 68.42% 72.92% 77.94% 78.12%
32 69.47% 86.46% 89.58% 91.67%
33 77.89% 89.58% 90.62% 94.79%
34 71.58% 84.375% 87.50% 88.54%
35 75.79% 83.34% 86.46% 87.50%
36 73.68% 79.17% 79.17% 83.33%
37 91.58% 91.67% 95.83% 95.83%
38 64.21% 79.17% 89.58% 89.58%
39 54.74% 93.75% 52.08% 94.79%
40 78.95% 80.21% 71.61% 81.25%
41 73.68% 80.21% 87.50% 83.33%
42 70.53% 83.34% 94.79% 90.62%
43 70.53% 87.5% 90.63% 92.71%
44 72.63% 86.46% 88.54% 89.58%
45 82.10% 92.713% 92.71% 94.79%
46 72.63% 80.21% 88.54% 89.58%
47 73.68% 69.79% 69.79% 61.46%
48 72.63% 86.46% 87.50% 97.92%
49 75.79% 86.46% 95.83% 96.88%
50 70.57% 80.21% 88.54% 89.58%
51 69.47% 76.04% 78.31% 79.17%
52 68.42% 73.96% 67.71% 65.63%
53 69.47% 82.29% 76.99% 80.21%
54 56.84% 64.58% 62.50% 66.42%

Average 71.49% 83.50% 84.37% 87.95%
general, brain activity is also widely seen on lower frequencies. Hence,
while certain high frequencies owing to noise may suddenly spike up,
the lower frequencies are the ones that are being used by the CNN to
classify the images. The main difference between tanh and ReLU is that
ReLU is a linear function that starts from ‘zero’ and goes till infinity,
while tanh is a function that tends to ‘one’ for higher input values.
Hence, when we use ReLU with our data, it will equally pass lower
and higher frequencies (spiky inputs) through the network which is not
desirable as lower frequencies have more importance. This is where
tanh is useful because it asymptotes towards ‘one’ for higher values,
thus, giving more importance to data with lower frequencies which is
desirable.

In order to ascertain whether the improvement with the CNN(tanh)
classifier is statistically significant, we carried out paired t-test between
the accuracy results of: (1) best classifier results with t-domain features
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(column 1, Table 6) versus those with CNN (tanh activation) (column
4, Table 6); and (2) best classifier results with t-domain features (col-
umn 2, Table 6) versus those with CNN (tanh activation) (column
4, Table 6). For both the comparisons, we first tested the normality
assumption of the data in each column using the Jarque–Bera test. This
was satisfied. Next, we compared the variance of both the comparison
groups in (1) and (2). The comparison groups in (1) displayed unequal
variances, while those in (2) displayed equal variances. Next, we car-
ried out paired t-test with the corresponding variance setting (unequal
in (1) and equal in (2)). The t-test rejected the null hypothesis of equal
means in (1) with a p-value = 8.6 × 10−20 and (2) with the p-value of
0.003, i.e., the value in both the cases is less than 0.005. This shows
that the improvement in accuracy is statistically significant with the
CNN classifier.
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Table 7
Summary of results obtained.

Features/model
used

#peak
performance
(unique)

#peak
performance
(total)

Total subjects
tested

t-domain 1 1 54
f-domain 3 5 54
CNN (relu
activation)

5 11 54

CNN (tanh
activation)

39 45 54

#peak performance (unique) indicates number of subjects that gave peak performance
only on the given model (there can be multiple models giving peak performance for
the same subject).
#peak performance (total) indicates number of subjects for whom peak performance
was observed.

Fig. 9. Results of Grad-Cam algorithm on the STFT input images of one subject to
ascertain the frequency regions where CNN is paying more attention to discriminate
between the two visual binding tasks.

The ability of the deep learning method (CNN) used in the study to
distinguish, with very high accuracy, between the two stages of visual
processing indicates a distinction between the EEG signals captured in
the two stages. It is, thus, important to assess the areas of the EEG
signals that are leading our CNN to distinguish between the two stages
as it can lead to more insights into the feature binding process.

In order to interpret the CNN and thus find areas of EEG signals
that are relevant to either stage of visual processing, we used Gra-
dient weighted Class Activation Maps (Grad-CAM) to generate visual
explanations of our CNN. Grad-CAM [79] is extensively used in image
classification tasks to generate visual explanations of where the CNN
is paying most attention, while classifying a certain class. It leads to
insights into the working of, otherwise very opaque, CNN models. In an
RGB image, grad-CAM gives insights into the physical location of areas
within the image that the CNN is paying attention to while classifying
certain classes. In our CNN, the input is an STFT image (ICA component
x Frequency x Time) of the EEG data, and thus grad-CAM will give
insights into the ICA Component x Frequency areas our CNN is looking
at while classifying certain classes. In Fig. 9, we present GRAD-CAM
results on one of the subjects STFT map.

As seen above, the CNN is paying attention to higher frequencies
while classifying for VWM (1500 ms) and lower frequencies while
classifying for VSM (100 ms). This means that higher frequencies are
10
more important while classifying the EEG data as that of VWM while
lower frequencies are more important while interpreting data as that of
VSM. This shift in frequencies indicates a steady and gradual refining
of the binding process in the VWM.

5. Conclusions

The current study shows the possibility of determining visual stimuli
by analysis of EEG signals using deep learning and machine learning
methods. The study also sheds light on how activation functions that
show best performance for data like EEG may be different from main-
stream activation functions that have been widely accepted in the deep
learning community. A new method to use STFT of a signal in order
to generate input to a convolutional neural network (a type of deep
learning architecture) has also been introduced.

The high accuracy with which machine learning and deep learning
algorithms trained on EEG data could identify the study test intervals
confirms the difference in cognitive processes involved when dealing
with visual stimuli in visual processing and in VSTM.

In keeping with some classic studies in visual memory [13,80], one
may surmise that at 100 ms, a spatiotopic representation influences
the performance of the participants. At this time the participants have
almost all items in their iconic memory. This spatiotopic represen-
tation results in a lower performance at 100 ms because there is a
mismatch between the representation of the study display and the
incoming test display, making the identification of binding swaps more
difficult, as locations of the original stimuli are still very much part
of their representation. However, at 1500 ms, the performance of the
participants is contingent only on the items that are maintained in
the limited capacity VSTM. Locations of the stimuli have already been
discarded from the representation. The identification of swaps is better
because stimuli are maintained as only color shape bindings, and a
visual search of the test display in a serial fashion matches the stored
representations with the stimuli in the test display to find the mis-
matched ones leading to better performance. There is no interference
from the irrelevant feature of locations. Indeed, some researchers have
also proposed a ‘fragile’ visual short term store between iconic and
visual working memory [40,81]. The current EEG evidence, however,
shows no sharp distinctions to denote these two (or three) stages of
memory and suggests only a gradual strengthening of working memory
representations. The STFT inputs being analyzed by the GRAD-CAM (as
shown by an example of one subject’s data in Fig. 9) carried out on all
channels of subjects clearly demonstrated that only lower frequencies
played significant roles (show higher amplitudes) in the blank period of
1500 ms. Several studies show that visual working memory processing
of objects is associated with CDA which is a low frequency event related
potential [82,83]. Thus, it can be inferred that although all features are
bound together initially, gradually the binding process continues such
that the representation of the object is steadily and gradually refined
(and strengthened) in VWM, such that at 1500 ms, only the relevant
features define the object representation in memory.

The current work focuses on determining the stages of visual pro-
cessing of a subject, where models are built separately for individual
subjects. This can be termed as intra-subject training. It is well known
by now that biomedical signals can be used as biometric data as well.
In other words, brain signals of each subject also have a characteristic
mark. In order to train a CNN classifier that can train on only the task
for all the subjects, irrespective of the subject characteristics, requires
a larger dataset. This is the limitation of the current study. The aim of
future studies will be to conduct inter-subject training of models where
models trained on some particular subjects can be used to determine
the stages of visual processing in another subject.

There is also a scope of re-engineering the model that has been
trained in order to determine the basic logic with which the model does
its calculation. This can unlock key insights into the working of visual
processing in the human brain.
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