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a b s t r a c t 

Multiple Myeloma (MM) is a malignancy of plasma cells. Similar to other forms of cancer, it demands 

prompt diagnosis for reducing the risk of mortality. The conventional diagnostic tools are resource-intense 

and hence, these solutions are not easily scalable for extending their reach to the masses. Advancements 

in deep learning have led to rapid developments in affordable, resource optimized, easily deployable 

computer-assisted solutions. This work proposes a unified framework for MM diagnosis using microscopic 

blood cell imaging data that addresses the key challenges of inter-class visual similarity of healthy ver- 

sus cancer cells and that of the label noise of the dataset. To extract class distinctive features, we pro- 

pose projection loss to maximize the projection of a sample’s activation on the respective class vector 

besides imposing orthogonality constraints on the class vectors. This projection loss is used along with 

the cross-entropy loss to design a dual branch architecture that helps achieve improved performance 

and provides scope for targeting the label noise problem. Based on this architecture, two methodolo- 

gies have been proposed to correct the noisy labels. A coupling classifier has also been proposed to re- 

solve the conflicts in the dual-branch architecture’s predictions. We have utilized a large dataset of 72 

subjects (26 healthy and 46 MM cancer) containing a total of 74996 images (including 34555 training 

cell images and 40441 test cell images). This is so far the most extensive dataset on Multiple Myeloma 

cancer ever reported in the literature. An ablation study has also been carried out. The proposed archi- 

tecture performs best with a balanced accuracy of 94 . 17% on binary cell classification of healthy versus 

cancer in the comparative performance with ten state-of-the-art architectures. Extensive experiments on 

two additional publicly available datasets of two different modalities have also been utilized for analyz- 

ing the label noise handling capability of the proposed methodology. The code will be available under 

https://github.com/shivgahlout/CAD-MM . 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Cancer occurs due to unconstrained cell division and can cause 

rgans’ dyscrasias. In 2018, there were 18.1 million estimated new 

ancer cases and 9.6 million deaths ( Bray et al., 2018; The Global 

ancer Observatory, 2020 ). The cancer death numbers are pro- 

ected to be approx. 13 million by 2030 ( Cancer Tomorrow, 2020 ). 

he cancer mortality rate is reported to be higher in low- and 

iddle-income countries (LMICs). These countries shared 65% of 

lobal cancer deaths in 2012 that is estimated to increase to 75% 

y 2030 ( Shah et al., 2019b ). These statistics can be improved by
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xpanding medical facilities including expeditious diagnosis that is 

rucial for moderating the mortality rate. 

Lymphocytes are a type of white blood cells that are further 

ategorized as T lymphocytes (T cells) and B lymphocytes (B cells). 

 cells counter the invaders’ antigens and are transformed into 

he plasma cells in the process. These plasma cells usually re- 

ide in the bone marrow. Multiple myeloma (MM), a type of 

hite blood cancer, occurs due to the unrestricted growth of these 

lasma cells ( Multiple Myeloma, 2020 ). Some conventional and 

eliable tests for MM diagnosis include quantitative immunoglobu- 

ins, electrophoresis, and bone marrow biopsy (immunohistochem- 

stry, flow cytometry, cytogenetics, and fluorescent in situ hy- 

ridization) ( Multiple Myeloma, 2020 ). Such tests require costly 

edical infrastructure and a trained workforce, limiting the expan- 

ion of diagnostic facilities at the required scale in rural and urban 

reas. 

https://doi.org/10.1016/j.media.2021.102099
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102099&domain=pdf
https://github.com/shivgahlout/CAD-MM
mailto:anubha@iiitd.ac.in
mailto:drritugupta@gmail.com
https://doi.org/10.1016/j.media.2021.102099
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Of late, considerable research is being undertaken to develop 

omputer-assisted diagnostic (CAD) tools for healthcare. If accu- 

ate enough, these tools can be deployed to aid medical profes- 

ionals and can mitigate the requirement of expensive specialized 

esources. Thus, CAD tools can act as significant enablers in scaling 

he necessary and affordable diagnostic facilities. In literature, two 

pproaches are frequently used for CAD tool development: 1) using 

he traditional machine learning classifiers such as support vector 

achine, naïve Bayes, decision tree, random forest, etc., and 2) us- 

ng the deep learning models, say, convolutional neural networks 

CNNs). As compared to the CNN-based tools, traditional classi- 

ers require a relatively smaller dataset. However, these classifiers’ 

erformance depends on input features extracted manually using 

he apriori information such as the cytoplasm or nucleus structure. 

hese predefined features may not be the best to work with, lead- 

ng to sub-optimal performance. 

In the context of blood cancers, Mohapatra et al. (2011) ; 

adhukar et al. (2012) ; Joshi et al. (2013) ; Mohapatra et al. (2014) ;

utzu et al. (2014) ; Chatap and Shibu (2014) ; Reta et al. (2015) ;

eoh et al. (2015) ; Vincent et al. (2015) ; Kazemi et al. (2015) ;

atel and Mishra (2015) ; Amin et al. (2016a) ; Singhal and 

ingh (2016) ; Amin et al. (2016b) ; Rawat et al. (2017a,b) ;

arthikeyan and Poornima (2017) ; Mishra et al. (2017, 2019) have 

tilized conventional classifiers. Besides the limitation of us- 

ng hand-crafted features, these methods have used very small 

atasets (19-267 images) for training and evaluating the test per- 

ormance. The tools designed with such datasets may not be re- 

iable for deployment in practical scenarios due to the large-scale 

eterogeneity within and across subjects’ data in real-life. 

On the other hand, CNNs eliminate the necessity and limitation 

f extracting manual features and facilitate task-dependent auto- 

atic feature extraction. The use of CNNs in the medical domain 

as seen a rapid surge in recent years ( Deng et al., 2020; Litjens

t al., 2017 ). However, training of CNNs from scratch requires a 

arge dataset depending upon the depth of the CNN. The avail- 

bility of a large annotated dataset for supervised learning is a 

hallenge in the medical domain. An alternate solution is to use 

ransfer learning, wherein a network trained on one dataset (pre- 

rained network) is used on another dataset. In one approach of 

ransfer learning, a pre-trained network is used directly for fea- 

ure extraction, while in another approach, a pre-trained network 

s fine-tuned on an available dataset. An overview of the works uti- 

izing CNNs for cell classification and cancer diagnosis with all of 

he above three approaches is provided in Table 1 . It is observed 

rom Table 1 that CAD tools have targeted a broad class of can- 

er diagnosis. Also, training from scratch and transfer learning have 

een deployed frequently to classify different types of cancers. Al- 

hough direct feature extraction eliminates the need for a training 

et, it is a less preferred approach, as seen from Table 1 , because

ne-tuning usually performs better than direct feature extraction. 

For blood cancer cell classification, fine-tuning has 

een performed on AlexNet by Rehman et al. (2018) and 

hafique and Tehsin (2018) , while Vogado et al. (2017) and 

ogado et al. (2018) extracted features directly from CNNs 

nd used SVM or other classifiers later. However, very small 

atasets have been used in these studies, say of 108, 310, 330, 

nd 891 images by Vogado et al. (2017) , Rehman et al. (2018) ,

hafique and Tehsin (2018) , and Vogado et al. (2018) , respectively. 

ine-tuning approach on a large dataset of B-ALL cancer, consisting 

f 12528 cell images for training and 2586 cell images for testing 

 Gupta and Gupta, 2019a ), has been carried out on different 

rchitectures ( Gupta and Gupta, 2019b ) by Pan et al. (2019) ;

erma and Singh (2019) ; Prellberg and Kramer (2019) ; 

iao et al. (2019) ; Shi et al. (2019) ; Liu and Long (2019) ;

hah et al. (2019a) ; Ding et al. (2019) ; Xie et al. (2019) . For

xample, pretrained ResNet incorporating label correction is em- 
2 
loyed by Pan et al. (2019) . Similarly, fine-tuning of ResNetXt50 

ith a layer-dependent learning rate is used by Prellberg and 

ramer (2019) . Xiao et al. (2019) utilized a pseudo labeling 

pproach with ensembling of pretrained architectures. The ensem- 

ling is also used by Shah et al. (2019a) and Ding et al. (2019) .

erma and Singh (2019) used MobileNet; Liu and Long (2019) and 

ie et al. (2019) used Inception ResNet, while Goswami et al., 

020 fine-tuned a pretrained Inception-v3 on the above men- 

ioned dataset using a newly defined heterogeneity loss function. 

esides using class centers, this loss function assigns a separate 

enter to each subject and attempts to capture the inter-class and 

nter-subject distinguishable characteristics. 

The classification networks used for transfer learning are gener- 

lly pre-trained on the ImageNet, a large 10 0 0 class non-medical 

mages’ dataset. For transfer learning, the target medical images 

re required to match these pre-trained networks’ input image 

ize. This requires a suitable scaling of input medical images. This 

caling may change the morphology of the medical constituents of 

mages, say cells, and hence, can hurt the classifier’s overall perfor- 

ance. Moreover, these networks may be undesirably massive for 

edical applications because the medical domain, in general, does 

ot encounter these many classes as are present in the ImageNet 

ataset ( Wong et al., 2018 ). 

Duggal et al. (2017) trained AlexNet and T-CNN from scratch 

or leukemia diagnosis. The trained architectures were then fine- 

uned after including the trainable stained deconvolutional (SD) 

ayer. However, a significant downside of this method is the aggre- 

ation of the dataset of all the subjects. This leads to the train- 

ng and testing on the same subjects’ data that is not the case 

n practical deployment, wherein a tool developed using a set of 

he subjects is to be tested on the prospective unseen subjects. 

ehlot et al. (2020b) has addressed this issue by segregating the 

ataset at the subject-level such that there is no common sub- 

ect between training and test datasets. The method includes uti- 

izing a combination of SD and DCT layers pre-appended to a com- 

act CNN architecture to aid the extraction of distinctive features 

rom the visually similar classes. The resultant architecture is then 

rained from scratch. Also, an ensembling approach utilizing an 

uxiliary classifier has been used to boost the classifier’s overall 

erformance. 

In this work, we have also employed the technique of training 

 custom CNN architecture from scratch to target the problem of 

ultiple myeloma (MM) cancer diagnosis. The proposed approach 

ncludes a novel loss function, a label noise handling method, and 

n ensembling approach. Also, we have used a large dataset for 

raining and testing purposes. Specifically, we have used a total of 

2 subjects’ data (26 healthy subjects and 46 MM cancer patients) 

ivided into 34555 training cell images of 46 subjects and 40441 

est cell images of 26 subjects. To the best of our knowledge, no 

ther work has utilized such a large dataset for any blood cancer 

iagnosis. The salient contributions of this works are listed as be- 

ow: 

1. A novel projection loss utilizing class-specific vectors has been 

proposed to achieve inter-class separation by maximizing the 

projection between the activation and the respective class vec- 

tors. The proposed loss also constrains the class vectors to be 

orthogonal to each other. 

2. A dual-branch architecture is used to accommodate projec- 

tion loss in combination with cross-entropy loss to achieve en- 

hanced performance. The architecture also employs two differ- 

ent feature pooling to capture the discerning features in multi- 

ple ways. 

3. Two label noise handling approaches utilizing the dual-branch 

architecture have been proposed to address the training sam- 
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Table 1 

A brief summary of some of the methods utilizing CNNs for cell classification and cancer diagnosis. T.S.: training from 

scratch. 

Reference Task Approach Architecture 

Han et al. (2016) HEp-2 Cell 

Classification 

CNN (T.S.) CaffeNet 

Bayramoglu et al. (2016) Breast Cancer 

Classification in 

Histopathology Images 

CNN (T.S.) Custom CNN 

Gao et al. (2017) HEp-2 Cell 

Classification 

CNN (T.S.) LeNet based CNN 

Sirinukunwattana et al. (2016) Colon Cancer Histology 

Images Classification 

CNN (T.S.) Custom CNN 

Meng et al. (2019) Cell Classification 

ATOM images 

CNN (T.S.) Custom CNN 

Qin et al. (2018) Leukocyte 

Classification 

CNN (T.S.) Custom CNN 

Chang et al. (2017) Cancer Cell 

Classification in 

Pancreas Histological 

Images 

CNN (T.S.) Custom CNN 

Sharma et al. (2017) Classification of 

Gastric Carcinoma 

Histopathological 

Images 

CNN (T.S.) Custom CNN 

Gehlot et al. (2020b) ALL Classification in 

Microscopic Images 

CNN (T.S.) Custom CNN 

Xu et al. (2015) Brain Tumor 

Classification in 

Histopathology Images 

Transfer learning 

(features extraction) 

AlexNet 

Phan et al. (2016) HEp-2 Cell 

Classification 

Transfer learning 

(features extraction) 

AlexNet based CNN 

Bayramoglu and Heikkilä (2016) Nuclei Classification in 

Histopathological 

Images 

Transfer learning (fine 

tuning) 

AlexNet, GoogleNet, 

VGG-16, GenderNet 

Tabibu et al. (2019) Renal Cell Carcinoma 

(RCC) 

Histopathological 

Image Classification 

Transfer learning (fine 

tuning) 

Resnet-18 & Resnet-34 

Han et al. (2018b) Classification of 

Cutaneous Tumors 

Transfer learning (fine 

tuning) 

ResNet-152 

Harangi (2018) Skin lesion 

classification 

Transfer learning (fine 

tuning) 

GoogLeNet, AlexNet, 

ResNet-152, VGGNet 

Zhang et al. (2017) Cervical Cell 

Classification 

Transfer learning (fine 

tuning) 

CaffeNet 

Jiang et al. (2017) Breast Cancer 

Classification in 

Mammograms 

Transfer learning (fine 

tuning) 

GoogLeNet, AlexNet 

Esteva et al. (2017) Skin Cancer 

Classification 

Transfer learning (fine 

tuning) 

Inception-v3 

Hekler et al. (2019) Histopathological 

Melanoma Image 

Classification 

Transfer learning (fine 

tuning) 

ResNet50 

Mazo et al. (2018) Cardiovascular Tissue 

Classification in 

Histological Images 

Transfer learning (fine 

tuning) 

VGG16, VGG19, 

ResNet, Inception 
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ples label noise. The proposed approaches are unsupervised 

from the perspective that no label information is required. 

4. A coupling classifier is proposed that resolves the ambiguity 

and predicts a unique label from the dual-branch architecture. 

This coupling classifier uses distinct sets of features from the 

two branches. 

5. The test performance has been evaluated using a large multi- 

ple myeloma (MM) dataset of 40441 images. An ablation study 

highlighting the proposed contributions along with the subject- 

level analysis has also been provided on the test dataset. Two 

other datasets (Camelyon7 and TBX11K) have also been used to 

validate the proposed label noise handling approach. 

. Materials 

We have used three datasets for the experiments. In this sec- 

ion, we provide a detailed description of all the three datasets. 
3 
.1. Multiple Myeloma (MM) dataset 

The dataset is collected using the slides prepared from the 

one marrow aspirate of the healthy and cancer subjects using 

he standard procedure, including staining slides with the Jenner- 

iemsa stain. The stain is used for highlighting the bone marrow 

ells, including the plasma cells, i.e., the cells of interest. Subse- 

uently, the slides are imaged in the.bmp format using the camera 

ounted on the microscope. The captured microscopic images are 

f size 2040 × 1536 pixels and contain the cells of interest anno- 

ated by the expert oncologists. These cells are segmented from 

he images using an in-house deep learning-based segmentation 

ool ( Gehlot et al., 2020a ). Each segmented image contains only a 

ingle cell centered at the origin. The segmented cell images are 

lso zero-padded to achieve a fixed spatial size of 350 × 350 , en- 

uring the containment of cells of varying sizes. The cancer class 

amples are collected from the patients diagnosed with multiple 
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Table 2 

Data Description. Number of subjects and images in the training and test sets. Distribution of subjects 

an d images in different folds of training data is mentioned. The folds have been prepared such that 

almost 1:1 ratio of the data of healthy and cancer class is maintained, while a subjects’ data is present 

in only one fold. 

Training set 

Folds 1 2 3 4 5 

No. of subjects 

Cancer Class 5 5 5 5 6 

Healthy Class 4 4 4 3 5 

Total no. of subjects in fold 9 9 9 8 11 

No. of Images 

Cancer Class 3456 3134 3679 3673 3471 

Healthy Class 3150 3428 3606 3870 3088 

Total no. of images in fold 6606 6562 7285 7543 6559 

Total no. of subjects 46 

Total no. of images 34555 

Test set 

No. of subjects 

Cancer Class 20 

Healthy Class 6 

Total no. of subjects 26 

No. of Images 

Cancer Class 19366 

Healthy Class 21075 

Total no. of images 40441 

Fig. 1. Sample images from the cancer class (first row), and the healthy class (second row). Samples of three subjects of each class have been shown. 
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yeloma, whereas samples of the healthy class are from subjects 

ot suffering from cancer of plasma cells. 

The dataset is collected from 72 subjects (26 healthy subjects 

nd 46 MM cancer patients), out of which 46 subjects’ data is used 

or training, and 26 subjects’ data is used for testing. Out of the 

6 subjects in the training set, 26 subjects belong to the MM can- 

er class, and the remaining 20 are healthy. These subjects are di- 

ided into five-folds, such that the entire data of one subject is 

resent in one fold only. In total, there are 34555 images in the 

rain set and 40441 images in the test set. The detailed descrip- 

ion of the dataset is provided in Table 2 . Also, the sample images

rom both classes are shown in Fig. 1 . The test set size is suffi-

iently large for the fair observation of the classifier’s performance. 

he dataset was collected at the Laboratory Oncology, AIIMS, New 

elhi, India, after the Ethics Committee’s approval. The subjects’ 

onfidentiality was maintained during the data collection process. 

nly one of the co-authors had access to the subject-specific in- 

ormation, which was entirely removed before sharing the data for 

xperiments. 

Challenges of the dataset From Fig. 1 , it is evident that the im-

ges of both the classes are visually similar. Moreover, there is 

 stain variation in the cell images of data of different subjects. 

n general, stain color variation occurs owing to multiple reasons 

 Gupta et al., 2020 ). Since this data is collected over a period of

wo years, the significant reason for stain variation is the use of 

ifferent manufactured batches of the staining chemical to pre- 

are the slides. Although stain normalization can be used before 

ell segmentation/classification ( Gupta et al., 2020 ), we have elim- 

nated this step to make the problem more challenging. 
4 
.2. Camelyon17 ( Bndi et al., 2019 ) 

It is a publicly available dataset and consists of 50 annotated 

hole slide images (WSIs) collected from five different centers (C0- 

4). The WSIs have captured H&E stained slides prepared from the 

ymph node sections. We have extracted 128 × 128 pixels patches 

rom WSIs of center-3 (C3) for experiments ( Figure 2 ). From the 

ollected patches, 74,633 are used for training, 150 0 0 for valida- 

ion, and the remaining 40 0 05 for testing ( Table 3 ). We have per-

ormed a classification task on the resultant dataset wherein the 

atches containing metastatic tumor cells are annotated as cancer 

nd healthy otherwise. 

.3. TBX11K ( Liu et al., 2020 ) 

It is a Tuberculosis X-ray dataset having images of 512 × 512 

ixels ( Figure 2 ). Each X-ray image is annotated as healthy or 

ick & non-TB or TB. The dataset also contains the images from 

hauhan et al. (2014) and Jaeger et al. (2014) . This results in the 

raining set of 6889 images, a validation set of 2087 images, and a 

est set of 3302 images ( Table 3 ). The GT is available only for train-

ng and validation sets and not for the test set. There is a challenge

 TBX11K Tuberculosis Classification and Detection Challenge, 2020 ) 

vailable on this dataset, and the test set performance can be eval- 

ated through the challenge portal. The challenge consists of two 

asks; TB detection and classification. We have performed analysis 

nly on the classification task. 
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Fig. 2. Sample images from the Camelyon17 (first row): (a-c) Healthy samples, and (d-f) Tumor samples. TBX11K (second row): (g-h) Healthy samples, (i-j) Sick & Non-TB 

samples, and (k-l) TB samples. 

Table 3 

Dataset description for Camelyon17 ( Bndi et al., 2019 ) and TBX11K ( Liu et al., 2020 ). Test set GT 

is not available for TBX11K. 

Camelyon17 TBX11K 

Splits/Classes Tumor Healthy Total TB Sick & Non-TB Healthy Total 

Train 37135 37498 74633 759 3001 3129 6889 

Val 7500 7500 15000 355 799 933 2087 

Test 20004 20001 40005 - - - 3302 

Fig. 3. Projections of the activation on the class vectors. 
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. Methods 

In this section, we will discuss the proposed projection loss, ar- 

hitecture, and noisy label handling method. 

.1. Projection loss 

We denote the d-dimension class vectors as c i such that i ∈ 

0 , C − 1] , where C is the total number of classes. Also, let y i rep-

esents the label of class i . Let a k be the activation obtained from

he last layer of a CNN for the sample X k . We define the projection

f a k on c i as: 

p k,i = 

a 

T 
k 

c i 

|| c i || 2 . (1) 

n an ideal scenario, if X k ∈ y i , then p k,i = 1 and if X k ∈ y j � = i , then

p k,i = 0 . The above interpretation can be modeled through a dis- 

ance d as ( Figure 3 ): 

(a k , c i ) = 

∣∣∣∣
∣∣∣∣ a 

T 
k 

c i 

|| c i || 2 − 1 

∣∣∣∣
∣∣∣∣

2 

2 

, (2) 

= | | p k,i − 1 | | 2 2 . (3) 
5 
he distance d(a k , c i ) should be ideally equal to 0, if X k ∈ y i 
nd should be 1 otherwise. Hence, d(a k , c i ) should be minimum 

or X k ∈ y i and maximum otherwise. The conditional probability 

 (y i | X k ; w, c i ) is represented in terms of the distance d(a k , c i ) as:

 (y i | X k ; w, c i ) = 

e −d(a k , c i ) ∑ C−1 
i =0 e −d(a k , c i ) 

, (4) 

here the activation vectors a k s are functions of weights w. The 

aximization of P (y i | X k ; w, c i ) demands the maximization of the 

umerator in (4) , which results in the minimization of d(a k , c i ) . 

ithout loss of generality, we introduce a variable β ( Yang, Zhang, 

in, Liu, 2018 ) in (4) , resulting in: 

 (y i | X k ; w, c i ) = 

e −βd(a k , c i ) ∑ C−1 
i =0 e −βd(a k , c i ) 

, (5) 

here β acts as a scaling factor. The loss function is then formu- 

ated as 

 

’ ( w, c ) = −
C−1 ∑ 

i =0 

y i [ log ( P ( y i | X k ; w, c i ) ] , (6) 

ˆ p data The overall loss can be obtained by summing over all the 

amples. 

rthogonality of the class vectors c i 

Apart from maximizing the projections of the sample on the re- 

pective class vectors, we also induce a orthogonality constraint on 

he class vectors, i.e., c T 
i 

c j � = i = 0 . For this, we introduce a regular- 

zation term L orth (·) given by 

 orth ( c ) = λ
C−1 ∑ 

j= i +1 

C−2 ∑ 

i =0 

|| c T i c j || 2 2 . (7) 
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his constraint helps in a better separation of classes. Combining 

6) and (7) , we obtain the overall loss function given by 

 PRL (w, c ) = − ∑ C−1 
i =0 y i [ log(P (y i | X k ; w, c i ) ] + λ

∑ C −1 
j= i +1 

∑ C −2 
i =0 || c T i c j || 2 2 ,

 PRL (w, c ) = L 

′ (w, c ) + λL orth ( c ) . 

(8) 

ntuitively, the projection loss helps to maximize the projection of 

he learned activations on the learnable class vectors and also at- 

empts to induce the orthogonality among the class vectors. The 

pdated equations for w and c are obtained from (8) as follows: 

 = w − α
∂ L 

′ 
∂a 

∂a 

∂w 

, (9) 

 i = c i − α

(
∂ L 

′ 
∂ c i 

+ λ
∂ L orth 

∂ c i 

)
, (10) 

here α is the learning rate. Hence, the class vectors ( c i ) are up- 

ated through both the terms. 

.2. BaseCE-Net 

As a starting point, we design a custom CNN classification net- 

ork instead of using any existing pretrained architecture. The net- 

ork consists of ten Conv Sections , where each Conv Section con- 

ists of a combination of 2D convolution filters, batch normaliza- 

ion, and parametric ReLu (PReLu) as an activation function. There 

s no max-pooling in the network; instead, stride ≥2 is used to 

chieve spatial size reduction. This also helps the network to learn 

he required pooling operation. After the last Conv Section , the out- 

ut features are given to a global averaging pooling (GAP) layer and 

nally passed to the output softmax layer. We name this architec- 

ure BaseCE-Net Network because we use binary cross-entropy loss 

unction to train it. 

.3. BasePRL Net 

Next, we replace the BCE loss with the proposed projection loss 

 L PRL ) in the BaseCE-Net network and name this architecture as 

asePRL-Net . As we have a binary class dataset, we initialize the 

wo-class vectors c 0 and c 1 for class 0 (healthy) and 1 (cancer), 

espectively. The output of GAP is projected on the class vectors 

 0 and c 1 , where (8) is used as the objective function. The output 

f GAP and the class vectors are of the same dimension. During 

he training, c 0 and c 1 are also updated along with the network 

arameters according to (10) . 

.4. PRLCE-Net 

We design a hybrid architecture that uses both BCE loss and 

rojection Loss (PRL). However, instead of directly adding BCE loss 

nd PRL, we combine the BaseCE-Net and BasePRL-Net such that 

he new architecture has shared convolution filters ( conv sections) 

or both the objectives. After that, the network is fragmented into 

wo branches. One branch is flattening (reshaping) the input fea- 

ures to use with the BCE loss, while the other branch is applying 

AP on the incoming features and then using the PRL on the resul- 

ant output. Different pooling layers help capture different struc- 

ures of the data that helps to utilize different information by each 

ranch. The PRLCE-Net is shown in Fig. 4 and its loss function is 

iven by 

 PR −CE = β1 L PR + β2 L CE (11) 

s observed from Fig. 4 , the predictions for the two loss functions, 

 PR and L CE , are obtained differently. During the backpropagation, 

hared convolutional filters (feature extraction filters) will be up- 

ated with two different objective functions. Since both the loss 
6 
unctions are attempting to perform a common task, albeit with 

ifferent approaches, the resultant weights will lead to more ro- 

ust feature extraction and better final performance. This claim has 

een verified in Section 4.1.2 . One of the advantages of PRLCE-Net 

s that it provides scope for inducing robustness. As discussed in 

ection 3.5 and Section 3.6 , we introduce ensembling and noise 

andling capability in PRLCE-Net Network to enhance its perfor- 

ance. 

.5. Label noise handling 

Medical datasets often suffer from the problem of noisy la- 

els due to several reasons such as decision ambiguity, varia- 

ions in the acquisition process, etc. Unlike the natural images, 

amples with noisy labels in medical datasets can not be identi- 

ed manually, even for small datasets, due to the inter-class vi- 

ual similarity. This makes the problem more challenging in med- 

cal data. At the same time, handling the noisy labels appropri- 

tely may improve the model’s performance. The label noise in 

he medical images have been addressed through label cleaning, 

oise layer, loss functions, data re-weighting, and training proce- 

ures ( Karimi et al., 2020 ). Among the label cleaning based ap- 

roaches, Veit et al. (2017) trained two CNNs, one using the clean 

ata for learning to denoise data to be used by the another CNN. 

owever, this approach also requires clean data, which may not be 

vailable in some scenarios. Another approach that requires clean 

ata is discussed in Lee et al. (2018) . In this work attention uti- 

izing encoder is used to generate the embedding vector of each 

lass. In parallel, another encoder is used to generate the query 

mage’s embedding vector. The similarity between query and ref- 

rence embedding vector is used to predict the samples with the 

abel noise. Han et al. (2018a) eliminates the necessity of clean 

ata. It maintains two CNNs, and the clean labels identified by 

ne network based on loss criteria are used to update the peer 

NN parameters. The proposed approach also does not require a 

lean dataset. In contrast to Han et al. (2018a) , our approach uti- 

izes only a single CNN and two different loss functions. We have 

lso used different label noise identification criteria that are not 

ased on loss function but on the predictions of two different 

ranches. The training procedure is also different. While the train- 

ng of Han et al. (2018a) consists of only one stage, our approach is 

ased on two-steps training. The proposed technique does not re- 

uire any prior knowledge of class labels and is unsupervised from 

his perspective. Consider the PRLCE-Net trained with { X k , y k } N−1 
k =0 

amples for T epochs. At any given epoch, the label predicted by 

RL branch for X k is given by 

ˆ 
 k = arg max l∈{ 0 , 1 } P ( ̂  y k,l ) . (12) 

his can be easily extended to C classes, wherein there will be C

lass vectors with l ∈ { 0 , 1 , ..C − 1 } . Similarly, for the CE branch, the

rediction for X k is 

˜ 
 k = arg max l∈{ 0 , 1 } P ( ̃  y k,l ) . (13) 

et P ( ̂  y k ) and P ( ̃  y k ) denote the probability scores of the predicted

abels. As the training of a CNN progresses, i.e., as more numbers 

f epochs are completed, the networks’ performance on the train- 

ng set improves. Accordingly, the performance on the validation 

et will improve if there is no overfitting. Let the total epochs T be 

ivided into two sets: { 0 , 1 , ..P − 1 } and { P, P + 1 ..T − 1 } . The num-

er P is chosen to be sufficiently large for the convergence of the 

raining process. This parameters will also be updated such that 

oth the PRL branch and CE branch yield an optimal performance. 

e hypothesize that even though the two branches use different 

oss functions, both will give approximately the same performance, 

t least on the non-noisy training data. After the (P − 1) th epoch, 

here are three possible scenarios for a training sample X : 
k 
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Fig. 4. PRLCE-Net. It uses CE and projection loss in the two branches. 

Fig. 5. The training process of the PRLCE-Net with the incorporation of the sample discarding as a label noise handling approach. The complete training occurs in two phases: 

first, the network is trained with all the training data and later, it is fine-tuned with sample discarding approach. 
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1 ˆ y k = ˜ y k i.e., predictions of the branches are same. 

2 ˆ y k � = ˜ y k with P ( ̂  y k ) ≥ τ and/or P ( ̃  y k ) ≥ τ i.e both branches are

predicting a different class but at least one of them has the 

prediction probability greater than or equal to the predefined 

threshold τ . 

3 ˆ y k � = ˜ y k with P ( ̂  y k ) < τ and P ( ̃  y k ) < τ i.e., both the branches

have different predictions and their prediction probabilities are 

also lower than the predefined threshold τ . 

For S1, both the branches are in agreement and we assume that 

he label is noise-free. For S3, although the predictions are differ- 

nt, either one of the two branches is confident about its predic- 

ion. This difference may arise due to different loss functions in 

ach branch. However, since one of the branches is certain about 

ts decision, we assume that the sample’s label is correct. For S3, 

oth the branches are in disagreement, and also none of them is 

onfident about its prediction. If we choose τ = 0 . 60 , then the pre-

iction probabilities will be in the range of (0 . 50 , 0 . 60] , which is

ery low. This shows a low confidence of both the branches along 

ith the disagreement. We assume that such samples have noisy 

abels. Samples that meet S3 and hence, have noisy labels, can be 

andled with the below two approaches. 

1 Label Flipping: If we have a binary class dataset, each sample 

will belong to either class 0 or class 1. Therefore, when we sus- 

pect a sample to be having an incorrect label, we flip its label 
7 
to that of the other class, i.e., 

y k = 1 − y k if ˆ y k � = 

˜ y k with P ( ̂  y k ) < τ and P ( ̃  y k ) < τ. (14)

Hence, true label ( y k ) is changed if S3 is satisfied by the pre-

dicted labels ( ̂  y k and ˜ y k ). For a C class dataset, there are C − 1 

possibilities with which k th true label can be flipped, out of 

which only one scenario is correct. Hence, we require to take 

a computationally-expensive iterative approach. 

1 Sample Discarding: Another approach to handle S3 is sample 

discarding. If any sample satisfies S3, we remove that sample 

from the training set. In this way, we may have a clean dataset 

with no samples having noisy labels. Also, since no flipping is 

involved, this approach is independent of the number of classes 

and has the same computational cost irrespective of the classes 

( Figure 5 ). 

Sample discarding reduces the number of training samples, 

hich is not the case with label flipping . Once we decide to opt for

ither of the two approaches to tackle S3, we fine-tune the model 

uring { P, P + 1 ..T − 1 } epochs with the modified set { X k , y k } . This

ne-tuning with possibly clean data will try to adjust the decision 

oundary that was obtained earlier until P epochs with the noisy 

ata. With label flipping , we have C − 1 final models for a C class 

ataset. This has a high computational complexity, especially, if C

s very large. However, for C = 2 , we have only one final model.

n the other hand, there will always be a single final model with 

ample discarding approach, irrespective of the number of classes. 
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Algorithm 1: Training and Testing of PRLCE-Net+SD+CC 

(PRLCE-Net with sample discarding and coupling classifier) 

Input : PRLCE-Net network , Epoch sets: { 0 , 1 , ..P − 1 } and 

{ P, P + 1 ..T − 1 } , and coupling classifier: C(·) 
Output : Final Predictions: { ́y test 

k 
} 

Data : Train set: { X 

train 
k , y train 

k 
} , validation set: { X 

v al 
k , y v al 

k 
} , test 

set: { X 

test 
k } 

1 Initial Training 

while epoch (e ) ∈ { 0 , 1 , ..P − 1 } do 

Update the parameters of PRLCE-Net network (Fig.4) using 

(11) 

2 Finetuning incorporating Noisy Labels Handling Approach 

while epoch (e ) ∈ { P, P + 1 ..T − 1 } do 

Identify noisy labels’ samples using S3 

Use A2 to update the training set to { ́X 

train 

k , ý train 
k 

} 
Update the parameters of PRLCE-Net network using the 

{ ́X 

train 

k , ý train 
k 

} 
3 Train the Coupling Classifier C(·) 

for { X 

train 
k } do 

ḱ = { k | ̂  y train 
k 

= ˆ y train 
k 

= y train 
k 

} 
C = φ

(
S 

(
f { X 

train 

ḱ 
, y train 

ḱ 
} 
))

4 Testing on { X 

test 
k } 

Predict ˆ y test 
k 

and ˜ y test 
k 

using PRLCE-Net network 

if ˆ y test 
k 

� = ˜ y test 
k 

then 

ý test 
k 

= C 
(
S( f ( X 

test 
k ) 

)
else 

ý test 
k 

= ˆ y test 
k 

= ˜ y test 
k 

4

4

W

n

4
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.6. Coupling classifier 

Consider PRLCE-Net ( Fig. 4 ). As the network contains the two 

ranches, there will be two possible scenarios for any test sample 

 

test 
k : 

1. Both branches have same predictions i.e ˆ y test 
k 

= ˜ y test 
k 

. 

2. Both branches yield different outcomes, i.e., ˆ y test 
k 

� = ˜ y test 
k 

. 

For case (1), we consider the prediction of either branch to be 

he final prediction ( ́y test 
k 

) or ý test 
k 

= ˆ y test 
k 

= ˜ y test 
k 

. However, in case 

f a conflict, the prediction of any branch could be correct. Hence, 

hoosing the label of any one branch will make us biased towards 

hat particular branch. It also gives uncertainty in choosing the 

ight prediction. Hence, it is ideal to output a single label instead 

f two different predictions. We propose a solution to this problem 

n the form of a coupling classifier. This couples the two branches 

nd helps to obtain a unique prediction from the PRLCE-Net. Train- 

ng of the Coupling Classifier Once the training of the PRLCE-Net is 

ompleted, we find all the training samples on which both the 

ranches are yielding correct and same predictions. 

´
 = { k | ̂  y train 

k = 

ˆ y train 
k = y train 

k , and 0 ≤ k ≤ N − 1 } (15)

e use { X 

train 

ḱ 
, y train 

ḱ 
} to train the coupling classifier. However, in- 

tead of using flattening or GAP, { X 

train 

ḱ 
} is passed through a spec- 

ral averaging layer. Hence, { S ( f 
(
X 

train 

ḱ 

))
, y train 

ḱ 
} are used for train- 

ng the coupling classifier . The use of a different type of pooling 

rovides a different set of features to the coupling classifier as com- 

ared to the ones obtained from the other two branches. This helps 

he classifier in making a better decision. Testing of the Coupling 

lassifier During the testing, test samples having distinct predic- 

ions by both the classifiers are predicted by the coupling classifier . 

et X 

test 
k be the sample for which we have a conflicting decision. 

he f ( X 

test 
k ) is then passed to the spectral averaging layer and the 

esultant output is given to the coupling classifier to predict its la- 

el. Again, there are two possibilities to use the labels predicted by 

he coupling classifier . 

1) Stand-Alone Decision: In this case, we consider the label of 

the coupling classifier to be the final prediction, i.e., ý test 
k 

= 

C 
(
S( f ( X 

test 
k ) 

)
. Through this, an independent decision is ob- 

tained because we ignore the predictions of both the branches. 

2) Ensemble Decision: Another possibility is to consider the deci- 

sions of both the branches along with the coupling classifier . For 

example, we can obtain the final decision as: 

ý test 
k = g 

(
ˆ y test 

k , ̃  y test 
k , C 

(
S( f ( X 

test 
k ) 

)
) 
)
, (16) 

where g(·) is some ensembling function. If we consider g(·) 
to be the majority voting, the final label is same as that pre- 

dicted by two or more classifiers. This criterion will always 

work for the binary class datasets but fail in the case of multi- 

class datasets if each classifier’s prediction is different. 

The training and testing of the custom classifier are also sum- 

arized in Fig. 6 . Also, for the case of binary class datasets, both

he testing approaches will lead to the same results. 

To summarize, we start with PRLCE-Net and include label flip- 

ing or sample discarding to address the label noise problem. Fi- 

ally, we include the coupling classifier to make the final de- 

ision without any conflict. This process is also summarized in 

ig. 7 . Specifically, the training and testing process of PRLCE-Net 

ith sample discarding and coupling classifier is elaborated in the 

igure Algorithm 1 . 
8 
. Results and discussion 

.1. Multiple Myeloma (MM) Dataset 

In this section, we will validate all the proposed methodologies. 

e will also compare the proposed architectures with the existing 

etworks. First, we will discuss the results on MM dataset. 

.1.1. Training and testing details 

Stochastic gradient descent with a momentum of 0.9 is used 

s an optimizer. We have also used a weight decay of 0.01 and 

 batch size of 64. The training is carried out for a total of 150

pochs, starting from a learning rate of 0.001. The learning rate 

s reduced to one-tenth of its present value after 80 th , 120 th , and

40 th epoch. The parameters β and γ in (8) are set to 2 and 1, re- 

pectively, and τ is set to 0.6 in S1 and S3. Also, the values of β1 

nd β2 in (11) are 1. PyTorch deep learning library is used for the 

mplementation and GeForce RTX 2080 Ti is used to accelerate the 

raining and testing processes. This strategy is used for the train- 

ng of BaseCE-Net, BasePRL-Net , and PRLCE-Net . For training PRLCE- 

et+SD or PRLCE-Net+LF , we have fine-tuned PRLCE-Net for another 

5 epochs with an initial learning rate of 0.0 0 0 01 using the Adam

ptimizer after incorporating sample discarding or label flipping . The 

urrent value of the learning rate is multiplied by 0.1 after 10 th and 

0 th epoch. Results of the fine-tuning of PRLCE-Net with Adam op- 

imizer and without including sample discarding or label flipping 

s provided in the supplementary. We have also used kernel SVM 

ith radial basis function (RBF) as the coupling classifier’s kernel. 

We used five-fold cross-validation for the training and testing of 

he architectures. One fold is used for validation at a given instance 

nd the remaining four folds are used for training. Thus, we obtain 

ve trained models for any particular architecture. We use Model- n 
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Fig. 6. Training and Testing with Coupling Classifier. Features to the coupling classifier are fed through the spectral averaging layer. 

Fig. 7. Complete training and testing strategy incorporating label noise handling 

and coupling classifier. 

Fig. 8. Training curves of PRL and CE branches of PRLCE-Net : Model-1. Network 

trained with fold-1 as the validation set is represented as Model-1. 
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o denote the architecture trained using the n th fold as the valida- 

ion set and remaining folds as the training sets. The best model 

chieved according to the validation performance is used for final 

nalysis. We used majority voting on the predictions obtained from 

he five models (Model-1 to Model-5) to arrive at the final decision 

n test samples. 

To augment the training data, we used random rotation in 

0,360), and horizontal and vertical flips ( Huang et al., 2017; He 

t al., 2016; Springenberg et al., 2015 ). We also normalized the 

ataset through mean and standard deviation before feeding it to 

he architectures. Oversampling is also used to handle class imbal- 

nce, if any. The training curves of both the branches of PRLCE-Net 

re shown in Fig. 8 and indicate the training convergence. 

For performance comparison, we used weighted F 1 score as well 

s the individual F 1 scores for each class. We also used balanced 

ccuracy, which is the average of recall and specificity. Class-wise 

 1 score helps highlight the performance on the individual classes, 

hereas weighted F score and balanced accuracy take the class 
1 

9 
mbalance into consideration. We also computed the area under 

he curve (AUC) to highlight different thresholding effects. We uti- 

ized the accuracy metric to analyze the subject-level performance. 

.1.2. Ablation study 

We perform an ablation study to highlight the significance of 

ll the proposed techniques. We start with the BaseCE-Net and sub- 

equently, analyze the contribution of each additional component. 

s a notation, PRLCE-Net+SD (CE) denotes the CE branch of PRLCE- 

et trained with incorporating Sample Discarding . Similarly, PRLCE- 

et+SD (PRL) represents the PRL branch of the same network. Also, 

RLCE-Net+SD+CC denotes PRLCE-Net augmented by Sample Discard- 

ng and Coupling Classifier . Other notations can be followed on sim- 

lar lines. 

As compared to BaseCE-Net, BasePRL-Net performs better on 

hree models (Model-1, Model-4, and Model-5), while the latter 

eads on the remaining two models. Overall, with ensembling (ma- 

ority voting), BasePRL-Net leads BaseCE-Net . This trend is seen on 

ll the four metrics. Specifically, BasePRL-Net performs better than 

aseCE-Net with a margin of 0 . 19% on the healthy class F 1 score

N F 1 score), 0 . 35% on the cancer class F 1 score (N F 1 score), 0 . 29%

n the weighted F 1 score (N F 1 score), and 0 . 27% on the balanced

ccuracy, which shows the contribution of the projection loss. 

PRLCE-Net consists of CE loss and projection loss in differ- 

nt branches. This combination helps boost the performance of 

ach branch as compared to the individual networks ( BaseCE-Net 

nd BasePRL-Net ). For example, with ensembling, as compared to 

aseCE-Net, PRLCE-Net (CE) gains by 0 . 55% , 0 . 76% , 0 . 66% , 0 . 66% on

 F 1 score, C F 1 score, W F 1 score and balanced accuracy, respectively. 

imilar trends are seen on individual models (Model-1 to Model- 

). Similarly, PRLCE-Net (PRL) performs better than BasePRL-Net on 

ach model (Model-1 to Model-5), as well as with ensembling. 

verall, the former is performing better than the latter by a mar- 

in of 0 . 31% (N F 1 score), 0 . 35% (C F 1 score), 0 . 33% (W F 1 score), and

 . 32% (balanced accuracy). 

.1.3. Effect of label flipping 

The effect of label flipping (A1) in handling label noise is shown 

n Table 4 and Table 5 . Comparing PRLCE-Net+LF (CE) with PRLCE- 

et (CE) , an improvement is seen on three models, and finally, after 

ajority voting, the gain is 0 . 11% , 0 . 18% , 0 . 14% , 0 . 15% for N F 1 score,

 F 1 score, W F 1 score, and balanced accuracy, respectively. However, 

n improvement is observed with PRLCE-Net+LF (PRL) as compared 

o PRLCE-Net (CE) only for one model (Model-4). On the remaining 

odels or with majority voting, there is no gain on either of the 

etrics. Overall, there is a reduced performance with the inclusion 

f label flipping. 
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Table 4 

Results of Healthy Class F 1 Score and Cancer Class F 1 Score with all the proposed methods. These results 

are obtained on 40440 test images. Best results are highlighted in bold. Same results are depicted in italics. 

Network trained with fold-n (n = 1,2..5) as the validation set is represented as Model-n. 

Healthy Class F 1 Score 

Architectures/Models Model-1 Model-2 Model-3 Model-4 Model-5 Majority Voting 

BaseCE-Net 0.9212 0.9391 0.9275 0.9321 0.9309 0.9374 

BasePRL-Net 0.9285 0.9310 0.9253 0.9378 0.9316 0.9393 

PRLCE-Net (CE) 0.9312 0.9435 0.9304 0.9388 0.9368 0.9429 

PRLCE-Net (PRL) 0.9314 0.9424 0.9307 0.9389 0.9371 0.9424 

PRLCE-Net + CC 0.9317 0.9439 0.9308 0.9394 0.9378 0.9435 

PRLCE-Net + LF (CE) 0.9356 0.9360 0.9276 0.9458 0.9408 0.9440 

PRLCE-Net + LF (PRL) 0.9309 0.9325 0.9253 0.9443 0.9372 0.9404 

PRLCE-Net + LF (CC) 0.9357 0.9361 0.9278 0.9463 0.9410 0.9443 

PRLCE-Net + SD (CE) 0.9404 0.9435 0.9359 0.9437 0.9414 0.9481 

PRLCE-Net + SD (PRL) 0.9367 0.9409 0.9356 0.9423 0.9384 0.9457 

PRLCE-Net + SD+CC 0.9403 0.9436 0.9360 0.9442 0.9416 0.9482 

Cancer Class F 1 Score 

Architectures/Models Model-1 Model-2 Model-3 Model-4 Model-5 Majority Voting 

BaseCE-Net 0.9006 0.9274 0.9094 0.9156 0.9143 0.9233 

BasePRL-Net 0.9121 0.9187 0.9073 0.9251 0.9167 0.9268 

PRLCE-Net (CE) 0.9160 0.9320 0.9140 0.9249 0.9238 0.9309 

PRLCE-Net (PRL) 0.9161 0.9305 0.9145 0.9251 0.9240 0.9303 

PRLCE-Net + CC 0.9167 0.9327 0.9148 0.9259 0.9252 0.9318 

PRLCE-Net + LF (CE) 0.9223 0.9224 0.9104 0.9351 0.9291 0.9327 

PRLCE-Net + LF (PRL) 0.9150 0.9171 0.9068 0.9329 0.9238 0.9275 

PRLCE-Net + LF (CC) 0.9224 0.9225 0.9107 0.9357 0.9295 0.9331 

PRLCE-Net + SD (CE) 0.9291 0.9321 0.9223 0.9320 0.9301 0.9381 

PRLCE-Net + SD (PRL) 0.9235 0.9283 0.9217 0.9300 0.9258 0.9346 

PRLCE-Net + SD+CC 0.9289 0.9321 0.9225 0.9328 0.9304 0.9383 

Table 5 

Results in terms of Weighted F 1 Score and Balanced Accuracy with all the proposed methods. These re- 

sults are obtained on 40440 test images. Best results are highlighted in bold. Network trained with fold-n 

(n = 1,2..5) as the validation set is represented as Model-n. 

Weighted F 1 Score 

Architectures/Models Model-1 Model-2 Model-3 Model-4 Model-5 Majority Voting 

BaseCE-Net 0.9113 0.9335 0.9188 0.9242 0.9230 0.9306 

BasePRL-Net 0.9206 0.9251 0.9167 0.9317 0.9244 0.9333 

PRLCE-Net (CE) 0.9239 0.9380 0.9226 0.9321 0.9306 0.9372 

PRLCE-Net (PRL) 0.9241 0.9367 0.9229 0.9323 0.9308 0.9366 

PRLCE-Net + CC 0.9245 0.9385 0.9231 0.9329 0.9318 0.9379 

PRLCE-Net + LF (CE) 0.9293 0.9295 0.9193 0.9407 0.9352 0.9386 

PRLCE-Net + LF (PRL) 0.9233 0.9251 0.9165 0.9389 0.9308 0.9342 

PRLCE-Net + LF (CC) 0.9293 0.9296 0.9196 0.9413 0.9355 0.9390 

PRLCE-Net + SD (CE) 0.9350 0.9380 0.9294 0.9381 0.9360 0.9433 

PRLCE-Net + SD (PRL) 0.9304 0.9348 0.9289 0.9364 0.9323 0.9404 

PRLCE-Net + SD+CC 0.9348 0.9381 0.9295 0.9388 0.9362 0.9435 

Balanced Accuracy 

Architectures/Models Model-1 Model-2 Model-3 Model-4 Model-5 Majority Voting 

BaseCE-Net 0.9088 0.9317 0.9164 0.9218 0.9206 0.9285 

BasePRL-Net 0.9184 0.9235 0.9144 0.9298 0.9223 0.9314 

PRLCE-Net (CE) 0.9218 0.9360 0.9203 0.9299 0.9286 0.9351 

PRLCE-Net (PRL) 0.9220 0.9347 0.9206 0.9301 0.9289 0.9346 

PRLCE-Net + CC 0.9224 0.9366 0.9209 0.9307 0.9298 0.9359 

PRLCE-Net + LF (CE) 0.9273 0.9274 0.9170 0.9388 0.9333 0.9366 

PRLCE-Net + LF (PRL) 0.9211 0.9229 0.9141 0.9369 0.9287 0.9321 

PRLCE-Net + LF (CC) 0.9274 0.9275 0.9173 0.9394 0.9337 0.9371 

PRLCE-Net + SD (CE) 0.9332 0.9361 0.9273 0.9361 0.9342 0.9415 

PRLCE-Net + SD (PRL) 0.9284 0.9328 0.9269 0.9343 0.9304 0.9384 

PRLCE-Net + SD+CC 0.9331 0.9362 0.9275 0.9368 0.9345 0.9417 
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.1.4. Effect of Sample Discarding 

Next, we analyze the contribution of sample discarding as a 

oise label handling approach. We compare the performance of 

RLCE-Net+SD with other methods in Table 4 and Table 5 . On com- 

aring PRLCE-Net+SD (PRL) with PRLCE-Net (PRL) or PRLCE-Net+SD 

CE) with PRLCE-Net (CE) , we see an enhanced performance on 

ach model as well as with ensembling. For N F 1 score, PRLCE- 
10 
et+SD (CE) leads PRLCE-Net (CE) by 0 . 52% , whereas with BaseCE- 

et the margin is 1 . 07% . Similarly, margins, after including sam- 

ling discarding, are 0 . 72% for C F 1 score, 0 . 61% for W F 1 score, and

 . 64% on balanced accuracy in the CE branch. For the PRL branch, 

he introduction of sample discarding led to a gain of 0 . 33% , 0 . 43% ,

 . 38% , 0 . 38% in terms of N F 1 score, C F 1 score, W F 1 score, and bal-

nced accuracy, respectively. These values are compared to the re- 
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Table 6 

The number of predictions aided by the coupling classifier. These results are obtained 

on 40440 test images. Network trained with fold-n (n = 1,2,...,5) as the validation set is 

represented as Model-n. 

Architectures/Models Model-1 Model-2 Model-3 Model-4 Model-5 

PRLCE-Net + CC 153 145 120 120 154 

PRLCE-Net + SD+CC 334 193 135 174 259 
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ults of PRLCE-Net (PRL) . The gain is higher in comparison to the 

asePRL-Net . 

.1.5. Role of coupling classifier 

It is observed from Tables 4 , 5 that the networks’ predictions in- 

olving the CE and PRL branches are not the same for both the 

ranches, and that there is a conflict in the decision of the two 

lassifiers. Table 6 shows the exact number of samples for PRLCE- 

et and PRLCE-Net+SD on which there is a disagreement between 

he two branches. Without a coupling classifier, there will be an 

ncertainty in choosing the prediction of either branch. Apart from 

roviding certainty in the final predictions, the coupling classi- 

er also yields somewhat improved performance. Although the im- 

rovement is not that significant, the coupling classifier serves its 

rimary purpose of removing the discrepancy. 

.1.6. Summary of the ablation study 

These results indicate that each proposed component aids 

n performance enhancement. PRLCE-Net+SD+CC is obtained after 

odifying BaseCE-Net by including projection loss, label noise han- 

ling, and the coupling classifier. On comparing BaseCE-Net with 

RLCE-Net+SD+CC , we observe an improvement of 1 . 5% on C F 1 
core. This improvement is 1 . 08% in terms of N F 1 score. Similarly,

e see an increment of 1 . 29% , and 1 . 32% on W F 1 score, and bal-

nced accuracy, respectively. We also observe the significance of 

RLCE-Net because it provides the scope for introducing label noise 

andling strategy like sample discarding and label flipping , and en- 

embling with the coupling classifier. 

.1.7. Receiver operating characteristics (ROC) and Area Under Curve 

AUC) 

Next, we analyze ROC and AUC for all the proposed architec- 

ures. Results of different models (Model-1 to Model-7) are shown 

n Fig. 9 . There is an incremental trend in the AUC from BaseCE-Net 

o BasePRL-Net . On all models, except for Model-5, PRLCE-Net+SD 

PRL) has the highest value of AUC. Same values are obtained for 

RLCE-Net+SD (PRL) and PRLCE-Net(PRL) in Model-4. Also, among 

he PRL and CE branches, the former has the dominant AUC. Again, 

n majority of the models, sample discarding yields better AUC 

ompared to label flipping. Also, on some of the models (Model-2 

nd Model-4), addition of label flipping does not provide improved 

erformance. All architectures are observed to have high AUC that 

s close to one in some cases. 

.1.8. Subject level performance analysis 

Apart from the overall performance on all the test images, an- 

ther essential aspect in the computer-aided diagnosis is subject- 

evel performance. This is because it will be tested on new test 

ubjects in a realistic environment once the model is deployed. As 

here might be subject-level variability, the performance may vary 

t the subject-level. The variations could be due to some noise in 

he image capturing process or some variations in the slide prepa- 

ation pipeline, or other related issues. To highlight this issue, we 

ave carried out a subject-level analysis, as shown in Fig. 10 . The 

nalysis is performed on twenty subjects of the cancer class and 

ve subjects belonging to the healthy class. With PRLCE-Net+SD+CC , 

he network performance is very high on the seventeen subjects of 
11 
he cancer class, with 100% accuracy on some subjects (subject no. 

,7,9,11,14-17). For the rest of them, the accuracy is close to 1.00, 

hile for some, it varies from 93 . 13% − 97 . 49% . On three subjects,

he performance is poor. The accuracy on subject numbers 12 and 

9 is 61 . 95% and 68 . 31% , respectively. On the last remaining sub-

ect (no. 18), the accuracy is only 47 . 69% . Hence, the classifier per-

orms well on most subjects, but its performance is non-optimal 

n some of them. This difference in the performance highlights 

he impact of subject-level variations. This also implies that overall 

erformance is impacted only due to some subjects. Overall, we 

re able to design a classifier that performs well on most of the 

ubjects (17 out of 20). 

On the healthy subjects, the performance is consistently good 

ith minimum performance being 93 . 15% and a maximum being 

9 . 81% . There is not a significant decline in the performance on 

ny subject in the healthy class as was observed in the cancer 

lass. The standard deviation of the accuracy between the subjects 

s 0.0244 that again indicates stable inter-subject performance. 

Again, a difference is observed in the performance of PRLCE- 

et+SD (CE) and PRLCE-Net+SD (PRL) . The coupling classifier helps 

n deciding with certainty. It either deflects the outcomes towards 

ne branch or leads to better performance compared to both the 

ranches. Hence, the coupling classifier is also helpful in improv- 

ng the subject-level performance. 

.1.9. Comparison with existing architectures 

We have also compared the performance of the proposed 

ethodology with some existing architectures, and some of them 

ave achieved state-of-the-art results on the classification task. 

hese results are depicted in Table 7 . For training, these archi- 

ectures are initialized with pre-trained weights on the ImageNet 

ataset. The input image size is resized to 224 × 224 ( 299 × 299 

or Inception-v3) as required by these networks. Apart from W F 1 
core and balanced accuracy, we also analyzed the number of pa- 

ameters and the test compute time of each network. As seen 

rom Table 7 , SqueezeNet ( Iandola et al., 2016 ) has the least W F 1 
core and balanced accuracy. The SDCT-Net ( Gehlot et al., 2020b ) 

s a very compact architecture with least number of parameters 

nd testing time, and yet it is performing better than SqueezeNet. 

he SDCT-AuxNet θ ( Gehlot et al., 2020b ) is performing better than 

DCT-Net, highlighting the impact of auxiliary classifier. Also, both 

f these architectures are trained from scratch with original im- 

ge size (350 × 350). ShuffleNet-V2 ( Ma et al., 2018 ) performs bet- 

er than SqueezeNet by 4.38% and 4.14% for WF 1 score and bal- 

nced accuracy, respectively. Also, the number of parameters (and 

est time) has increased significantly. GoogleNet ( Szegedy et al., 

015 ) performs with a marginal increase of 4.68% and 4.48% 

ver SqueezeNet in terms of W F 1 score and balanced accuracy. 

enseNet121 ( Huang et al., 2017 ) is performing almost similar to 

oogleNet, but has a higher number of parameters and greater 

est time. ResNet34 ( He et al., 2016 ) and ResNeXT ( Xie et al., 2017 )

ave better performance compared to ResNet18 ( He et al., 2016 ), 

ut the former’s number of parameters and test time are also rel- 

tively high. All of these three networks have residual connections 

nd have better performance than DenseNet121 and a higher num- 

er of the parameters. MobileNet-V2 ( Sandler et al., 2018 ) has the 

east number of parameters (and test time) than all these architec- 
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Fig. 9. Receiver Operating Characteristics and Area Under Curve (AUC) with different architectures. These results are obtained on 40440 test images. The network trained 

with fold-n (n = 1,2,...,5) as the validation set is represented as Model-n. 

Fig. 10. Subject-level performance in terms of accuracy with PRLCE-Net and its variants: cancer class subjects (a-c), and healthy class subjects (d). 

12 
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Table 7 

Comparison of proposed method with some existing architectures in terms of weighted F 1 score, balanced accuracy, number of parameters, 

and test time. Results are computed on all 40441 test samples including time taken in decision making. Best results are highlighted in bold. 

∗: parameters without coupling classifier. † : parameters withou t auxiliary classifier. 

Weighted F 1 Score 

Models/ Architectures Model-1 Model-2 Model-3 Model-4 Model-5 Majority Voting Parameters Time (in sec) 

SqueezeNet 0.8161 0.8414 0.8356 0.8449 0.8447 0.8514 736450 2469.5092 

SDCT-Net 0.8493 0.8849 0.8626 0.8354 0.8605 0.8700 95937 2064.1083 

SDCT-AuxNet θ 0.8547 0.8819 0.8661 0.8447 0.8677 0.8811 95937 † 2999.2237 

ShuffleNet-V2 0.8539 0.8772 0.8928 0.8823 0.9072 0.8952 1255654 9259.4499 

GoogleNet 0.8730 0.8943 0.9012 0.8702 0.9001 0.8982 5601954 12419.9610 

DenseNet121 0.9041 0.8980 0.8890 0.8631 0.8942 0.8984 6955906 19884.8681 

ResNet18 0.8892 0.8924 0.9018 0.8442 0.8994 0.9052 11177538 9360.4598 

ResNeXt 0.9114 0.8931 0.9119 0.8581 0.8940 0.9058 22984002 18348.7165 

ResNet34 0.8866 0.9211 0.9054 0.8372 0.9057 0.9094 21285698 15202.9181 

MobileNet-V2 0.9098 0.8664 0.9131 0.9057 0.9093 0.9120 2226434 9505.9263 

DCE Loss 0.9005 0.8813 0.9045 0.9090 0.9093 0.9142 2531979 3105.1951 

Inception-V3 0.9210 0.9331 0.9043 0.8877 0.8944 0.9171 24348900 23590.9895 

PRLCE-Net + SD+CC 0.9348 0.9381 0.9295 0.9388 0.9362 0.9435 2569871 ∗ 3694.9547 

Balanced Accuracy 

Models/ Architectures Model-1 Model-2 Model-3 Model-4 Model-5 Majority Voting Parameters Time (in sec) 

Squeezenet 0.8142 0.8414 0.8381 0.8462 0.8435 0.8512 736450 2469.5092 

SDCT-Net 0.8472 0.8832 0.8606 0.8332 0.8580 0.8677 95937 2064.1083 

SDCT-AuxNet θ 0.8552 0.8799 0.8672 0.8429 0.8653 0.8796 95937 † 2999.2237 

Shufflenet-V2 0.8516 0.8746 0.8903 0.8796 0.9048 0.8926 1255654 9259.4499 

GoogleNet 0.8709 0.8920 0.8993 0.8679 0.8979 0.8959 5601954 12419.9610 

DenseNet121 0.9017 0.8958 0.8865 0.8604 0.8915 0.8957 6955906 19884.8681 

ResNet18 0.8869 0.8898 0.8997 0.8432 0.8967 0.9028 11177538 9360.4598 

ResNeXt 0.9093 0.8908 0.9094 0.8555 0.8912 0.9031 22984002 18348.7165 

ResNet34 0.8844 0.9188 0.9028 0.8352 0.9031 0.9068 21285698 15202.9181 

MobileNet-V2 0.8637 0.9108 0.9033 0.9065 0.9094 0.9071 2226434 9505.9263 

DCE Loss 0.8990 0.8793 0.9030 0.9072 0.9069 0.9124 2531979 3105.1951 

Inception-V3 0.9190 0.9320 0.9019 0.8868 0.8917 0.9149 24348900 23590.9895 

PRLCE-Net + SD+CC 0.9330 0.9361 0.9275 0.9368 0.9344 0.9417 2569871 ∗ 3694.9547 
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Table 8 

Results on clean Camelyon17 and TBX11K. The best results are highlighted 

in bold. 

Camelyon17 TBX11K 

Architecture WF1 BAC Architecture Accuracy 

PRLCE-Net (CE) 0.9751 0.9751 PRLCE-Net (CE) 0.9255 

PRLCE-Net (PRL) 0.9741 0.9741 PRLCE-Net (PRL) 0.9364 

PRLCE-Net + CC 0.9755 0.9755 PRLCE-Net + CC 0.9313 

t

a

c

w
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o
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r

4

h

4

m
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p

ures (except for SqueezeNet and ShuffleNet), but has better perfor- 

ance. Results with distance based cross entropy loss (DCE loss) 

re calculated by replacing the loss function in BasePRL-Net and 

raining the network from scratch. The performance with DCE loss 

 Yang et al., 2018 ) is better than all the existing architectures dis-

ussed to this point. Inception-V3 ( Szegedy et al., 2016 ) has the 

ighest number of parameters and test time, but it also has bet- 

er performance than these architectures. From Table 5 , we ob- 

erve that BaseCE-Net has better performance than all these archi- 

ectures, which are also trained with BCE loss. 

Further, projection loss performs better than the DCE loss. The 

CE loss ( Yang, Zhang, Yin, Liu, 2018 ) minimizes the euclidean dis- 

ance between the class centers and respective activations, with no 

onstraints on the centers. In contrast, the projection loss is min- 

mizing the projection of the features on respective class vectors. 

t is also constraining class vectors to be orthogonal to each other. 

hese results highlight the importance of the network’s depth used 

n this proposed work and the contribution of projection loss over 

CE loss. Finally, PRLCE-Net+SD+CC has a leading performance than 

he rest of the network in terms of both the metrics. 

In conclusion, we observe that a larger number of parame- 

ers does not lead to significantly higher performance. This may 

e due to the relatively smaller size of the dataset, although the 

ataset is very large looking from the perspective of medical do- 

ain. Also, fewer parameters are not sufficient for the satisfactory 

erformance either. Hence, it is necessary to design an optimal 

epth network that has, perhaps, been achieved with our custom 

etwork. Also, architectures trained from scratch have better per- 

ormance than the ones initialized with pre-trained weights. 

We also visualized the t-SNE plots for PRLCE-Net . Since this net- 

ork has two branches containing CE loss and PR loss, the scatter 

lots are depicted for both the losses. The t-SNE is used to reduce 
p

13 
he feature dimension to 2 from 18432 and 512 for the CE branch 

nd PRL branch, respectively. Resulting plots in Fig. 11 show the 

lass separation with both of these branches on the training data 

ith Model-5. Perfect classification is not achieved with either loss, 

s some samples lie on the opposite side of the boundary. In both 

f the cases, some cancer class samples are on the opposite side. 

owever, with PR loss, there is a clear separation (with some er- 

or) of the two classes, which is not the case with the CE loss. 

.2. Camelyon7 and TBX11K datasets 

We use these two datasets for the validation of the label noise 

andling with the proposed methodology. 

.2.1. Experiments Set-Up 

The label noise is introduced in both the datasets and experi- 

ents are carried out with the proposed methodology to analyze 

ts impact in handling the introduced label-noise. We have used 

air flipping ( Han et al., 2018a ) to introduce the label-noise. In 

air flipping, for a noise level p, and the number of classes C, the 
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Fig. 11. t-SNE plots with Model-5 on the training data for (a) PRL branch, and (b) CE branch. 

Table 9 

Results on Camelyon17 at different noise-levels with PRLCE-Net and incorporation of label flippin g (LF) and sample discarding (SD). Best results 

are highlighted in bold. 

WF1 BAC 

Noise-level ( p)/ Architectures 0.1 0.2 0.3 0.4 0.45 0.1 0.2 0.3 0.4 0.45 

PRLCE-Net (CE) 0.9600 0.9557 0.9421 0.9210 0.8832 0.9601 0.9557 0.9422 0.9214 0.8839 

PRLCE-Net (PRL) 0.9596 0.9555 0.9424 0.9171 0.8792 0.9555 0.9555 0.9425 0.9176 0.8801 

PRLCE-Net + CC 0.9609 0.9559 0.9424 0.9210 0.8832 0.9610 0.9560 0.9425 0.9214 0.8839 

PRLCE-Net + LF (CE) 0.9732 0.9646 0.9505 0.9573 0.9460 0.9733 0.9646 0.9506 0.9574 0.9461 

PRLCE-Net + LF (PRL 0.9732 0.9652 0.9524 0.9580 0.9507 0.9733 0.9653 0.9525 0.9580 0.9507 

PRLCE-Net + LF (CC) 0.9739 0.9653 0.9523 0.9580 0.9507 0.9739 0.9653 0.9524 0.9580 0.9507 

PRLCE-Net + SD (CE) 0.9686 0.9664 0.9534 0.9546 0.9506 0.9686 0.9664 0.9535 0.9547 0.9507 

PRLCE-Net + SD (PRL) 0.9689 0.9665 0.9547 0.9551 0.9508 0.9689 0.9665 0.9548 0.9552 0.9508 

PRLCE-Net + SD+CC 0.9696 0.9667 0.9547 0.9554 0.9508 0.9696 0.9667 0.9548 0.9554 0.9508 
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ransition matrix A C×C is given as: 

 C×C = 

⎡ 

⎢ ⎣ 

1 − p p 0 . . . 0 

0 1 − p p . . . 0 

. . . . . . . . . . . . . . . 

p 0 0 . . . 1 − p 

⎤ 

⎥ ⎦ 

, (17) 

here A m,k = P ( ̂  y = k | y = m ) . As an example, for three classes ( C =
 ), and noise level( p) of 0.4: 

 C×C = 

[ 

0 . 6 0 . 4 0 

0 0 . 6 0 . 4 

0 . 4 0 0 . 6 

] 

(18) 

ence, the label is flipped only to the next class with a given prob-

bility. 

The PRLCE-Net architecture is used for both the datasets ex- 

ept for TBX11K in which a stride of 2 is used in the second last

onv Section also, and the number of class vectors is three. Since 

here is a class imbalance in TBX11K, oversampling is used during 

he training to balance the classes. The training details for both 

atasets are the same as for the MM dataset. 

.2.2. Results on Camelyon17 

Results on clean (noise-free) Camelyon17 are summarized in 

able 8 in terms of weighted F1 score (WF1) and balanced ac- 

uracy (BAC). Next, the noise is introduced through pair flipping, 

nd results are reported with PRLCE-Net in combination with la- 

el flipping (LF) and sample discarding (SD) in Table 9 . From 

able 8 & 9 , the best results are obtained with clean data, and per-

ormance is decremented with increment in noise level. Further, 

F and SD are able to increase the performance with the noisy 

ata. For example, the best performance gain in terms of WF1 at 

oise levels 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 with inclusion of coupling classifier is
14 
 . 3% , 1 . 08% , 1 . 23% , and 3 . 7% , respectively. At 0.45 the gain is 6 . 76% .

imilar gains are observed for BAC. Also, both LF and SD provide 

pproximately similar incremental performance, with LF giving the 

est performance at p = 0 . 1 and 0 . 4 while SD gives maximum per-

ormance on the remaining noise-levels. Another observation is 

igher gain at higher noise levels. Hence, incorporating noise han- 

ling approaches can provide significant gains, particularly at the 

igher noise. 

.2.3. Results on TBX11K 

Results on the clean dataset are provided in Table 8 . For 

oupling-classifier, results are reported with an ensembling ap- 

roach. The best accuracy of 0.9364 is obtained with PRLCE-Net. 

hese results are obtained through submission on the challenge 

ortal. At the time of writing, these are the best classification re- 

ults available on the leaderboard ( TBX11K Tuberculosis Classifica- 

ion and Detection Challenge, 2020 ). As compared to the second- 

est results, our method is providing a gain of 2 . 85% . This perfor-

ance is achieved with a very light architecture (only ten convolu- 

ional layers) and no other data augmentation apart from random 

otation and oversampling. 

Results with noise addition are provided in Table 10 . For brevity, 

e have used the knowledge of pair flipping in experiments with 

F. Although this knowledge is not available in the practical sce- 

ario, we have used it for concept validation. There are C − 1 pos- 

ible scenarios in LF in the absence of such knowledge. 

As expected, increased noise label results in decreased perfor- 

ance. Again there is an improvement with LF and SD. At 0.1, there 

o gain with SD, and with LF, the maximum gain is 0 . 12% . At 0.2,

he maximum gain with SD is 0 . 06% . At p = 0 . 3 and 0.4, the max-

mum gain with LF is 0 . 06% and 2 . 46% , respectively. Also, there is

 maximum gain of 0 . 87% at p = 0 . 4 with SD. Hence, there is no
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Table 10 

Results on TBX11K at different noise-levels with PRLCE-Net and incorporation of sam- 

ple discarding (SD). Best results are highlighted in bold. 

Accuracy 

Noise-level ( p)/Architecture 0.1 0.2 0.3 0.4 0.45 

PRLCE-Net (CE) 0.9122 0.8898 0.8486 0.8144 0.7020 

PRLCE-Net (PRL) 0.9237 0.9079 0.8937 0.8640 0.7753 

PRLCE-Net + CC 0.9204 0.9043 0.8937 0.8680 0.8071 

PRLCE-Net + LF (CE) 0.9131 0.8934 0.8695 0.8531 0.8038 

PRLCE-Net + LF (PRL) 0.9249 0.9064 0.8943 0.8886 0.8625 

PRLCE-Net + LF+CC 0.9216 0.9037 0.8898 0.8852 0.8692 

PRLCE-Net + SD (CE) 0.9146 0.8886 0.8422 0.7789 0.6814 

PRLCE-Net + SD (PRL) 0.9237 0.9085 0.8904 0.8755 0.8107 

PRLCE-Net + SD+CC 0.9194 0.9046 0.8901 0.8767 0.8295 

Table 11 

Average number of the samples affected in sample discarding 

(SD) and label flipping (LF) at different noise levels ( p) for 

TBX11K. 

Average Number of Samples 

Method/Noise level 0.1 0.2 0.3 0.4 0.45 

SD 163 221 424 1350 1772 

LF 162 213 354 740 954 

Table 12 

True detection rate (TDR) and false detection rate (FDR) for TBX11K at dif- 

ferent noise level with sample discarding (SD) and label flippng (LF) 

Noise ( p)/ 

Method Detection Rate 0.1 0.2 0.3 0.4 0.45 

LF 
TDR (in %) 4.95 6.25 9.09 11.66 16.73 

FDR (in %) 1.53 2.60 4.62 6.51 9.82 

SD 

TDR (in %) 5.81 7.82 14.22 20.23 28.62 

FDR (in %) 1.53 2.78 7.26 12.51 19.73 
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ignificant gain up to p = 0 . 3 , but at p = 0 . 4 , there is a significant

mprovement. Similarly, at 0.45, the maximum gain is 8 . 72% and 

 . 54% with LF and SD, respectively. For Camelyon7 also, the gain is 

ery significant at p = 0 . 4 and 0 . 45 . 

Hence, the approach is very effective at the higher noise levels. 

nother aspect of TBX11K is higher LF performance than SD, espe- 

ially at the higher noise levels. This is because a more number of 

he samples affected at the higher noise levels. Hence, in SD, the 

amples are dropped in a similar proportion making the dataset 

maller. It is crucial if the dataset already has fewer samples. It 

s the case with TBX11K, as it has only 6889 training samples. 

hereas in LF, the samples are retained and are some of them 

re potentially assigned correct labels leading to much more im- 

roved performance. To highlight this issue, the average number of 

he samples affected at different noise levels in SD and LF are re- 

orted in Table 11 . On average, 1772 samples have been discarded 

n SD, which is why there is a large margin between SD and LF 

erformance. 

We have also used the true detection rate (TDR) to represent 

he percentage of the noisy samples detected correctly. Similarly, 

he false detection rate (FDR) represents the fraction of the clean 

amples detected as the noisy samples. We report these two met- 

ics for dataset TBX11K in Table 12 with sample discarding and la- 

el flipping. The two main observations from Table 12 are as fol- 

ows: i) both TDR and FDR are increasing with the increasing noise 

evel. Also, the increment is sharp for each additional noise level. 

or example, as the noise level increased from 0.4 to 0.45, TDR and 

DR in LF increased by 5 . 07% , and 3 . 31% respectively. Similarly, the

ncrement in TDR and FDR with SD is 8 . 39% , and 7 . 22% , respec-

ively. Hence, the approach is becoming aggressive with increment 

n the noise level. ii) The TDR and FDR are higher with SD as com-
15 
ared to LF. For example, at p = 0 . 45 , SD has an additional 11 . 89%

DR over LF. 

The gap between PRLCE-Net (CE) and PRLCE-Net (PRL) is also 

overed with the coupling classifier. The t-SNE plots with SD and 

F at noise-levels 0.3, 0.4, and 0.45 for dataset TBX11K are shown 

n Fig. 12 . The plots show the detected and missed noisy samples. 

he noisy samples have been detected for all three classes. As ob- 

erved from Table 12 , detection increases with the increased noise 

evel. Also, SD is more aggressive than LF. 

. Conclusion and future work 

We have proposed a CNN based unified framework for the diag- 

osis of multiple myeloma (MM). The problem is challenging due 

o inter-class visual homogeneity. We have addressed this classi- 

cation problem through a methodology involving cross-entropy 

oss, novel projection loss, label noise handling, and coupling clas- 

ifier. The resultant approach provides a final weighted F 1 score 

f 94 . 35% , and a balanced accuracy of 94 . 17% on a large test

et of 40441 images. The method has a good subject-level per- 

ormance, which is essential. However, the performance lacks on 

ome of the subjects of the cancer class. The low performance 

n some subjects may be due to subject-level variability in the 

ata. An approach to improve the performance may be to add 

ore subjects to the training dataset. However, the collection of 

nnotated medical datasets is a challenging task. Generative mod- 

ls such as GANs can be used to generate the new subjects’ 

ata. However, there could always be cases where testing sub- 

ect distribution is relatively different from the training subjects. 

ence, a robust approach may be to make the architecture im- 

une to such variability. We will consider this aspect in future 

ork. 

We have also shown the application of the proposed method- 

logy on the two other datasets (one binary and one three classes 

ataset). The proposed approach can work on both the datasets in 

he presence of noise also. Also, on a multi-class dataset (TBX11K), 

e achieve state-of-the-art classification results with the proposed 

rchitecture. 
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Fig. 12. t-SNE plots for TBX11K with SD (a-c) and LF (d-f) showing the detected noisy samples and missed noisy samples at noise level 0.3 (first column), 0.4 (second 

column), and 0.45 (third column). 
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