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a b s t r a c t 

Individual characterization of subjects based on their functional connectome (FC), termed “FC fingerprinting ”, has 
become a highly sought-after goal in contemporary neuroscience research. Recent functional magnetic resonance 
imaging (fMRI) studies have demonstrated unique characterization and accurate identification of individuals as 
an accomplished task. However, FC fingerprinting in magnetoencephalography (MEG) data is still widely un- 
explored. Here, we study resting-state MEG data from the Human Connectome Project to assess the MEG FC 
fingerprinting and its relationship with several factors including amplitude- and phase-coupling functional con- 
nectivity measures, spatial leakage correction, frequency bands, and behavioral significance. To this end, we first 
employ two identification scoring methods, differential identifiability and success rate, to provide quantitative 
fingerprint scores for each FC measurement. Secondly, we explore the edgewise and nodal MEG fingerprinting 
patterns across the different frequency bands (delta, theta, alpha, beta, and gamma). Finally, we investigate the 
cross-modality fingerprinting patterns obtained from MEG and fMRI recordings from the same subjects. We assess 
the behavioral significance of FC across connectivity measures and imaging modalities using partial least square 
correlation analyses. Our results suggest that fingerprinting performance is heavily dependent on the functional 
connectivity measure, frequency band, identification scoring method, and spatial leakage correction. We report 
higher MEG fingerprinting performances in phase-coupling methods, central frequency bands (alpha and beta), 
and in the visual, frontoparietal, dorsal-attention, and default-mode networks. Furthermore, cross-modality com- 
parisons reveal a certain degree of spatial concordance in fingerprinting patterns between the MEG and fMRI data, 
especially in the visual system. Finally, the multivariate correlation analyses show that MEG connectomes have 
strong behavioral significance, which however depends on the considered connectivity measure and temporal 
scale. This comprehensive, albeit preliminary investigation of MEG connectome test-retest identifiability offers 
a first characterization of MEG fingerprinting in relation to different methodological and electrophysiological 
factors and contributes to the understanding of fingerprinting cross-modal relationships. We hope that this first 
investigation will contribute to setting the grounds for MEG connectome identification. 
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. Introduction 

The increasing availability of public neuroimaging data in recent
ecades ( Van Essen et al., 2012 ) has given rise to an increasing number
f studies aiming at mapping the structure and function of the human
rain across multiple temporal and spatial scales ( Cabral et al., 2017 ;
riffa et al., 2017 ; Wirsich et al., 2020 ). To this end, a new line of

esearch was born, which models the brain as a network of intercon-
ected functional or structural elements, also known as brain connec-
omics ( Bassett and Sporns, 2017 ; Bullmore and Sporns, 2009 ; Fornito
∗ Corresponding author. 
E-mail address: enrico.amico@epfl.ch (E. Amico). 

5 The authors contributed equally 

c  

f  

ttps://doi.org/10.1016/j.neuroimage.2021.118331 . 
eceived 15 February 2021; Received in revised form 22 June 2021; Accepted 1 July
vailable online 5 July 2021. 
053-8119/© 2021 Published by Elsevier Inc. This is an open access article under th
nd Bullmore, 2015 ; Fornito et al., 2016 ). In brain connectomics, the
rain is often modeled as a network composed of nodes or brain re-
ions (defined according to a predefined brain atlas ( de Reus and van
en Heuvel, 2013 )) interconnected by two types of links or edges. The
rst ones, the structural connections, represent the physical wiring be-
ween different brain regions and are assessed using white matter fiber
ractography, leading to the structural connectome ( Hagmann, 2005 ;
porns et al., 2005 ). The second one, the functional connections, repre-
ent statistical interdependencies between brain regions’ signals while
ubjects are either at rest or performing a task, referred to as functional
onnectomes ( Friston, 1994 ). Brain connectomics has been proven use-
ul in mapping brain structure and function in large human populations,
 2021 
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ut also in investigating the association between individual connectome
eatures and behavioral, clinical and genetic profiles ( Fornito et al.,
019 , 2015 ; Sareen et al., 2020 ). 

Recent work on functional magnetic resonance imaging (fMRI)
 Amico and Goñi, 2018 ; Finn et al., 2015 ) shows that functional con-
ectomes can serve as ‘fingerprints’ of individual subjects ( Finn et al.,
015 ; Miranda-Dominguez et al., 2014 ). This capacity can be maxi-
ized across conditions ( Abbas et al., 2020 ) and different scanning
rotocols ( Bari et al., 2019 ). The fact that functional connectomes,
n essence, a second-order statistical summary of brain activity, con-
ains subject-specific information that can be used for prediction and
odeling of individual behavioral and clinical scores, has approached

rain connectomics to precision medicine and personalized treatments
 Castellanos et al., 2013 ; Fernandes et al., 2017 ; Smith et al., 2015 ).
urthermore, several research studies are also exploring the use of brain
ctivity as a physiological characteristic for next-generation biometric
ystems ( Fraschini et al., 2015 ; Rocca et al., 2014 ). 

Recently, few studies have started to explore connectome finger-
rinting in different functional neuroimaging modalities, such as func-
ional Near-Infrared Spectroscopy (fNIRS) ( Rodrigues et al., 2019 ), elec-
roencephalography (EEG) ( Demuru and Fraschini, 2020 ), and magne-
oencephalography (MEG) ( Demuru et al., 2017 ). MEG is a comple-
entary modality to fMRI which allows for exploring fast-scale brain

ommunication processes ( de Pasquale et al., 2016 ; Stam and van
traaten, 2012 ) and offers insights into functional connectivity differ-
nces between healthy and pathological populations ( Engels et al., 2017 ;
tam, 2014 ). A recent study has investigated the neurophysiological
oundations of individual differentiation from MEG data complex dy-
amics ( Castanheira et al., 2021 ). However, it is still unclear whether
unctional connectomes assessed at these faster temporal scales have
ngerprinting properties comparable to those observed at slower tem-
oral scales with fMRI ( Amico and Goñi, 2018 ; Finn et al., 2015 ). In
act, to date, we still do not know all the factors contributing to brain
ngerprinting. The temporal richness of EEG and MEG might give us
ew insights into the relationship between brain fingerprinting across
ifferent time scales or frequency bands. Furthermore, the possibility
f disentangling phase and amplitude contributions to MEG/EEG func-
ional connectivity allows for studying how individual connectome fea-
ures relate to different underlying coupling mechanisms. 

In this work, we address these open questions by a comprehensive
nvestigation of the fingerprinting properties of MEG functional connec-
omes. We start by studying the influence of MEG functional connec-
ivity measures on fingerprinting, and the role of temporal scales and
requency bands on connectome identification. Furthermore, we report
he main brain regions and connections that have the highest finger-
rinting values in MEG data; i.e., they are the most important for the
dentification of a single subject in a group. We conclude by comparing
nd analyzing the fingerprinting features extracted from MEG data to
he ones obtained from fMRI recordings in the same subjects and ex-
loring their relationship with behavioral traits. 

. Materials and methods 

.1. HCP data 

The dataset used for this study consisted of structural and functional
resting-state MEG and fMRI) data from 89 subjects (46% females, mean
ge 29.0 ± 3.6 years) of the 1200 Subjects release of the Human Con-
ectome Project (HCP) ( Larson-Prior et al., 2013 ; Van Essen et al., 2012 ;
an Essen et al., 2013 ). All included subjects had complete anatomical,
esting-state MEG and fMRI data and gave written consent according to
he HCP consortium rules. The MEG resting-state recordings were col-
ected at St. Louis University on a whole-head MAGNES 3600 (4D Neu-
oimaging, San Diego, CA) system including 248 magnetometers and
3 reference channels. Data were recorded at 2034 Hz sampling rate
n three separate runs of approximately 6 min each within a single-day
2 
ecording session, with subjects lying in the scanner in a supine posi-
ion with eyes open. Electrooculography (EOG) and electrocardiography
ECG) were acquired for ocular and cardiac artefacts’ rejection. More-
ver, the outline of each subject’s scalp (about 2400 points), anatom-
cal landmarks, and localizer coils’ positions were digitized at the be-
inning of the recording session. The fMRI resting-state recordings were
cquired at Washington University on a dedicated Siemens 3T Connec-
ome Skyra scanner with a 32-channel head coil on four runs of ap-
roximatively 15 min (TR 720 ms, 2 mm isotropic voxel size), two runs
n a session, and two runs in a separate day session. The two runs of
ach session were acquired with left-right (LR) and right-left (RL) phase-
ncoding directions, respectively. A structural T1w volume with 0.7 mm
sotropic voxel size was acquired as well. 

Functional data acquired for individual subjects on two separate
uns (MEG) or on two separate sessions (fMRI) were tagged as ‘test’
nd ‘retest’. Further details on the HCP data can be found elsewhere
 Glasser et al., 2013 ; Larson-Prior et al., 2013 ; Van Essen et al., 2012 ;
an Essen et al., 2013 ). 

.2. Cortical parcellation 

We used the Destrieux cortical parcellation provided by the
CP, which includes 148 regions of interest ( Desikan et al., 2006 ;
estrieux et al., 2010 ). Moreover, each cortical region was assigned to
ne of the seven resting-state networks (RSNs) defined by ( Yeo et al.,
011 ) through a majority voting procedure, i.e. each brain region
rom the Destrieux atlas was assigned to the most highly present
Yeo-defined) functional network (as analogously done in ( Amico and
oñi, 2018 )). 

.3. MEG processing 

We downloaded the preprocessed sensor-level MEG data from the
CP database. The MEG preprocessing pipeline includes three major

teps, (1) Bad channel/segment removal: removing non-working chan-
els, flat data segments, segments with abnormally high signal variance,
egments corrupted by artefacts, (2) Filtering: band-pass filtering (1.3–
50 Hz) and notch filtering (59–61 Hz/119–121 Hz) to remove power
ine artefacts, and (3) Artefact removal: decomposition of MEG data into
rain and non-brain (artefactual) components. Bad channels are identi-
ed by searching for outliers in the neighbor correlation distribution; for
ach channel, bad segments are identified by an abnormally high z-score
elative to the statistical characteristics of the entire data time series
f a channel. Artefact removal is achieved using Independent Compo-
ent Analysis (ICA) followed by automatic classification of the obtained
ndependent Components (ICs) into brain and non-brain (artefactual)
omponents. The ICs are evaluated for temporal and spectral proper-
ies and contribution of the eye or heart signals to classify them as brain
omponents, environmental/instrumental artefacts, and EOG/ECG com-
onents. The identified artefacts are removed from the data and only the
rain components are used for further analysis. In order to obtain source-
ocalized neural activity signals, we then projected the sensor-level time-
eries to 148 locations (sources) in the cortex corresponding to the cen-
roids of the Destrieux regions using FieldTrip r10442 ( Oostenveld et al.,
010 ). First, a forward lead field model was generated for each sub-
ect using the single-shell volume conduction head model provided by
he HCP ( Larson-Prior et al., 2013 ; Nolte, 2003 ) and the centroids of
he 148 cortical regions of interest. Second, the lead field model was
nverted using the Linearly Constrained Minimum-Variance beamform-
ng method to recover the source-level times-series ( Veen et al., 1997 ;

oolrich et al., 2011 ) ( Fig. 1 A). The reconstructed time-series were sub-
ivided into 33 epochs of 8 s duration (4072 samples) and bandpass
ltered into the five canonical frequency bands: delta (0.5–4 Hz), theta
4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–48 Hz)
sing two-way FIR filters of order 25. The epoch length of 8 s was cho-
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Fig. 1. MEG fingerprinting analysis pipeline. 
(A) Resting-state MEG HCP data from two dis- 
tinct runs for each subject were pre-processed 
and source-reconstructed to obtain a clean time 
series from 148 locations in the cortex. (B) 
Individual functional connectomes were esti- 
mated from these time series using different 
functional connectivity measures ( Table 1 ). (C) 
An identifiability matrix was computed for 
each functional connectivity measure from test 
(columns) - retest (rows) functional connec- 
tomes. Values on the diagonal represent the 
correlations between the scan-rescan connec- 
tomes of individual subjects; values outside the 
diagonal represent the inter-subject connec- 
tomes’ correlations. The derived I diff and Suc- 
cess Rate scores were used to assess the finger- 
printing capacity of each functional connectiv- 
ity measure. (D) Edgewise contributions to the 
overall fingerprinting of each functional con- 
nectivity measure were assessed with the intra- 
class correlation coefficient (ICC) and nodal 

contributions were assessed with the nodal fingerprinting strength, defined as the column sum of the ICC matrix. 

Table 1 

List of functional connectivity measures used. We separate out functional connectivity measures based on the type of coupling (amplitude or phase) and the effect 
of spatial leakage artifact (corrected or uncorrected) in our investigation. Δ𝜙: instantaneous phase difference; ℑ {X}: imaginary component of the cross-spectrum 

X ; Ψ and Φ represents PLI and wPLI values respectively. 

Abbreviation Connectivity Metric Type Spatial Leakage Correction Formulation 

AEC Amplitude Envelope Correlation Amplitude coupling No Pearson’s correlation between the 
instantaneous amplitude time courses 

AECc Amplitude Envelope Correlation corrected Amplitude coupling Yes Pearson’s correlation between the 
instantaneous amplitude time courses 
(pairwise orthogonalized) 

PLV Phase Locking Value Phase coupling No PLV ( 𝑡 ) 
Δ
= |E[ 𝑒 𝑗Δ𝜑 ( 𝑡 ) ] |

PLI Phase Lag Index Phase coupling Yes Ψ ≡ |𝐸{ sgn ( 𝐽{X} ) } |
wPLI Weighted Phase Lag Index Phase coupling Yes Φ ≡ |𝐸 { 𝑗 {X} } |

𝐸 { |𝑗 {X} |} 
= |𝐸 { 𝑗 {X} sgn ( 𝑗 {X} ) } |

𝐸 { |𝑗 {X} |} 

PLM Phase Linearity Measurement Phase coupling Yes PLM = 

𝐵 

∫
− 𝐵 

|

𝑇 

∫
0 
𝑒 𝑖 Δ𝜙( 𝑡 ) 𝑒 𝑖 2 𝜋𝑓𝑡 𝑑𝑡 |

2 

𝑑𝑓 

∞
∫
−∞

|
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∫
0 
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en based on the findings of recent studies that investigated the effect
f epoch length on functional connectivity ( Fraschini et al., 2016 ). 

.4. fMRI processing 

For the fMRI comparisons, we took the minimally preprocessed HCP
esting-state data ( Glasser et al., 2013 ) and added the following prepro-
essing steps. First, we applied a standard general linear model (GLM)
egression which included: detrending; removal of motion regressors
nd their first derivatives; removal of white matter (WM), cerebrospinal
uid (CSF) signals and their first derivatives; global signal regression
and its derivative). Secondly, we bandpass filtered the time series in
he range [0.01 0.15] Hz and averaged them across the voxels belonging
o each one of the 148 Destrieux cortical regions. Finally, region-wise
ime series were z-scored. 

.5. Functional connectivity measures 

There is a wide range of connectivity estimation methods for MEG
 Colclough et al., 2016 ), but their impact on MEG fingerprinting proper-
ies is currently unknown. In this study, we, therefore, evaluated six dif-
erent functional connectivity measures based on amplitude- or phase-
oupling between MEG time-series, and susceptible or non-susceptible
o spatial leakage artefacts ( Table 1 ). Source-reconstructed MEG time-
eries are spatially correlated due to the limited ability of beamforming
pproaches to disentangle shared neuronal components perceived by the
ame sensors. This effect, also known as spatial leakage, can artificially
3 
nflate short-range functional connectivity values as well as their cross-
ubject consistency ( Colclough et al., 2016 ; Palva and Palva, 2012 ).
orrections for spatial leakage can be embedded in the definition of
he functional connectivity measure itself (as is the case of some phase-
oupling measures, see below) or can directly act on the source time-
eries before functional connectivity estimation (e.g., by pairwise or-
hogonalization of the time-series). 

For the MEG data in our investigation, we considered two amplitude-
ased functional connectivity measures: i) the Amplitude Envelope Cor-
elation (AEC) and ii) the corrected Amplitude Envelope Correlation
AECc) computed after pairwise symmetric orthogonalization of the
EG data in the time domain ( Brookes et al., 2012 ; Hipp et al., 2012 ).
dditionally, we considered four phase-based measures: i) the Phase
ocking Value (PLV) which evaluates the time-varying phase difference,
s a measure of phase-locking, between two brain signals ( Lachaux et al.,
999 ); ii) the Phase-Lag Index (PLI) which estimates the asymmetry
round zero of the distribution of the phase differences between two
ignals ( Stam et al., 2007 ); iii) the weighted Phase Lag Index (wPLI)
hich weights the PLI by the magnitude of the imaginary component
f the cross-spectrum ( Vinck et al., 2011 ); and iv) the Phase Linearity
easurement (PLM) which measures the synchronization between brain

egions by monitoring their phase differences in time while accounting
or narrow differences in the main frequency components of the two
ignals ( Baselice et al., 2019 ; Sorrentino et al., 2019 ). While the PLI and
he wPLI are intrinsically insensitive to spatial leakage since they discard
ero phase-lag interactions between brain regions, the PLV is susceptible
o spatial leakage artifacts. The PLM formulation includes a correction
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or spatial leakage by excluding phase-difference components < 𝜀 (with
 set to 0.1 Hz according to ( Baselice et al., 2019 )). 

For the MEG amplitude-based measures, employed over each epoch
f MEG data, raw and pairwise orthogonalized band-passed time-series
ere Hilbert-transformed to derive their amplitude envelopes. The AEC

AECc) was then computed as the Pearson’s correlation coefficient be-
ween the amplitude envelopes and averaged over epochs. For the
hase-based measures, for each epoch, the band-passed time-series were
ilbert-transformed to derive the instantaneous phase signals which
ere used to compute the PLV, PLI, wPLI, and PLM values. Finally,

or each subject and each FC measure, the functional connectivity val-
es were averaged over all the epochs to obtain 10 test/retest averaged
unctional connectivity matrices per subject of dimension 148 × 148,
wo for each of the 5 frequency bands ( Fig. 1 B). For the fMRI data, func-
ional connectivity is conventionally estimated using bivariate methods
r recently, using multivariate methods ( Aggarwal et al., 2017 ). In this
ork, we employed the widely used Pearson’s correlation (PC) measure

o compute the functional connectivity in the fMRI data. 

.6. MEG connectome fingerprinting 

We explored the effect of the functional connectivity measures and
requency bands on the MEG connectome fingerprinting. Moreover, we
ssessed the contribution in terms of connectome edges and resting-state
etworks to the overall MEG fingerprinting levels. 

.6.1. MEG connectome fingerprinting: whole-network level 
Inspired by recent work on the maximization of connectivity fin-

erprints in human functional connectomes ( Amico and Goñi, 2018 ),
e study MEG connectome inter-subject identifiability by defining the

identifiability ” matrix (see also Fig. 1 C), a square and non-symmetric
imilarity matrix of size S 2 , where S is the number of subjects in the
ataset. This matrix encodes the information about the self-similarity of
ach subject with him/herself across the test/retest sessions ( I self , main
iagonal elements), and the similarity of each subject with the others
 I others , off-diagonal elements). The similarity between two functional
onnectomes was quantified as the Pearson’s correlation coefficient be-
ween the test/retest connectivity matrices. The difference between I self 
nd I others (denominated “Differential Identifiability ” - I diff) provides a
obust score of the fingerprinting level of a specific dataset ( Amico and
oñi, 2018 ). Furthermore, we also employed a binary identification

coring method called success rate defined as the percentage of sub-
ects whose identity was correctly predicted out of the total number of
ubjects ( Finn et al., 2015 ). Given the non-symmetric nature of finger-
rinting, we report the average success rate between session 1 - session
 and session 2 - session1. By investigating success rate and differen-
ial identifiability, we aim to develop a comprehensive understanding
f identification scores and their key role in connectome fingerprinting.
e further investigated the effects (main and interaction) of the factors

tudied in this work, i.e. functional connectivity metrics and frequency
ands, on individual discriminability (i.e., subject wise I diff) and reliabil-
ty (i.e., subject-wise I self ) using a N-way ANOVA. For this analysis, the
ubject-wise I self is the corresponding entry of the identifiability matrix
iagonal, whereas the subject-wise I diff is computed as the difference
etween each subject’s I self and the average I others associated with that
ubject. The subject was included as a confounding factor in the ANOVA
o account for possible inter-individual heterogeneities in relation to the
 self and I others scores. 

In order to assess the statistical significance of the observed differ-
ntial identifiability and success rate, we employed a permutation test-
ng framework as follows. At each iteration of the permutation testing,
ubjects’ test-retest connectomes were randomly shuffled, then differen-
ial identifiability and success rate were computed on the randomized
dentifiability matrix. This procedure was repeated 1000 times to gen-
rate a non-parametric "null" distribution of differential identifiability
4 
nd success rate scores. Furthermore, to correct for multiple compar-
sons, we merged the null distributions from all the six FC measures and
ve frequency bands. The observed (true) differential identifiability and
uccess rate scores were then compared against their corresponding null
istribution to determine the p-values ( Nichols and Holmes, 2001 ). 

.6.2. Contribution of individual functional connections 
We quantified the reliability of the connectome individual edges us-

ng the intraclass correlation coefficient, denoted as ICC ( Bartko, 1966 ;
cGraw and Wong, 1996 ), similarly to previous work ( Amico and
oñi, 2018 ). ICC is a widely used measure in statistics that describes
ow strongly units in the same group resemble each other. The stronger
he agreement, the higher its ICC value. We used ICC to quantify the
xtent to which an edge, i.e. a functional connectivity value between
wo brain regions, is identifiable across test/retest acquisitions across
he subject cohort. In other words, the higher the ICC, the higher the
fingerprinting value ” of the edge connectivity ( Amico and Goñi, 2018 ).
e generated a square and symmetric ICC matrix of size N 

2 , where N
s the number of brain regions (see Fig. 3 A, 3 C). In addition, we in-
estigated the resting-state networks identifiability (or fingerprint) by
roup-averaging the edgewise ICC values across intra- and inter-network
onnections, thus deriving 7 × 7 ICC fingerprint matrices corresponding
o the Yeo’s seven-network parcellation ( Yeo et al., 2011 ). For this in-
estigation, similarly to the fingerprint of edge connectivity, the higher
he ICC, the higher the “fingerprinting value ” of that resting-state net-
ork. The ICC scores were interpreted following the latest guidelines

tated in ( Koo and Li, 2016 ); below 0.50: poor, between 0.50 and 0.75:
oderate, between 0.75 and 0.90: good, and above 0.90: excellent. 

.6.3. Nodal fingerprinting strength 
Previous work on fMRI has reported higher fingerprinting value in

igher-order regions such as the frontal lobe ( Amico and Goñi, 2018 ;
inn et al., 2015 ). For this reason, we were interested in investigating
ossible fingerprinting spatial patterns in MEG data as well. We explored
he identifiability (or fingerprinting) strength of each brain region (de-
ominated as nodal fingerprinting strength) by summing the ICC edge-
ise matrix column-wise. We generated a distribution of the nodal fin-
erprinting strength for all the functional connectivity measures and fre-
uency bands of interest. We further visualized this by generating brain
enders of nodal fingerprinting strength per region, where we applied
 5th-95th percentile threshold on the generated nodal fingerprinting
trength distribution of each method under each frequency band of in-
erest. 

.6.4. Cross-modality fingerprinting patterns 
We were also interested in exploring the cross-modality similarity

etween the fingerprinting patterns of MEG and fMRI data. Initially, we
onducted a visual comparison between the brain renders of nodal fin-
erprinting patterns generated using the two modalities. Furthermore,
n order to obtain a numerical value for the similarity between the nodal
ngerprinting patterns of MEG and fMRI data, we introduced a corre-

ation coefficient metric called Cross-Modality Nodal Correlation Coef-
cient (denoted as CMNCC). We assessed CMNCC for three metrics: (i)
odal fingerprinting strength (NFS) - where we computed the CMNCC be-

ween the nodal fingerprinting strength vectors (computed as described
n 2.6.3), of the MEG and fMRI data, (ii) Whole-brain level - where we
omputed the CMNCC as the average node-to-node correlation between
dgewise ICC scores of MEG and fMRI data, and (iii) Network-leve l -
here the nodewise CMNCC scores estimated as in (ii) were instead av-
raged within the 7 Yeo functional networks, to estimate the functional
ubsystem with the highest nodal fingerprinting similarity across the
wo modalities. The CMNCC metric was computed using the Pearson’s
orrelation coefficient between the edgewise ICC scores of two modal-
ties and calculated for all FC measures and frequency bands. The sta-
istical significance of the CMNCC scores for the NFS metric is obtained
gainst the null hypothesis that the correlation scores between MEG



E. Sareen, S. Zahar, D.V.D. Ville et al. NeuroImage 240 (2021) 118331 

a  

c  

a

2
c

 

i  

L  

i  

F  

w  

i  

s  

a  

m  

o  

c  

f  

f  

c  

w  

c  

w  

f  

s  

c  

(  

n  

w  

p  

t  

a  

T  

t  

c  

s  

(  

a  

c

3

 

o  

r  

c  

(  

e  

w  

P  

t  

b  

l  

t  

F  

c  

s  

f

3

 

u  

i  

i  

i  

i  

w  

(  

i  

t  

a  

t  

a  

c  

(  

a  

m  

m  

f  

f  

a  

t  

a  

S  

a  

a  

A  

a  

w  

i  

±  

m  

c  

t  

t  

2  

b  

l  

1  

9  

a  

c  

c  

f
 

t  

i  

s  

w  

1  

s  

s  

a
 

t  

r  

i  

d  

s  

b  

p  

s  

F  

p

3

 

d  
nd fMRI data occurred by chance. The significant results are further
orrected for multiple comparisons (i.e. 30 tests for the six FC measures
nd five frequency bands) using Bonferroni correction. 

.7. Multivariate correlations between functional connectomes and 
ognition 

To investigate whether MEG functional connectomes explain inter-
ndividual variations of cognitive performances, we carried out Partial
east Square Correlation (PLSC) analyses between functional connectiv-
ty values (10 ′ 878 connections) and 10 cognitive scores across subjects.
or the cognitive scores, the 10 cognitive subdomains tested in the HCP
ere considered, namely, episodic memory, executive functions, fluid

ntelligence, language, processing speed, self-regulation/impulsivity,
patial orientation, sustained visual attention, verbal episodic memory,
nd working memory ( Barch et al., 2013 ). For subdomains for which
ore than one unadjusted raw score was available, a single score was

btained by data projection onto the first component from principal
omponent analysis. The PLSC analysis was repeated for each MEG
unctional connectivity measure and each frequency band, as well as
or the fMRI-based connectomes. By definition, PLSC identifies linear
ombinations of functional connectivity values that maximally covary
ith linear combinations of cognitive scores through singular value de-

omposition of the data covariance matrix ( Krishnan et al., 2011 ). The
eights of such linear combinations are traditionally referred to as brain

unction and cognitive saliences and correspond to the left and right
ingular vectors of the data covariance matrix. The statistical signifi-
ance of the PLSC components was assessed with permutation testing
1000 permutations; correlation patterns with p < 0.05 were deemed sig-
ificant) ( Krishnan et al., 2011 ). Reliability of nonzero salience values
as assessed with bootstrapping procedure (1000 random data resam-
ling with replacement) and computing standard scores with respect to
he bootstrap distributions (salience values were considered reliable for
bsolute standard score > 3) ( Krishnan et al., 2011 ; Zöller et al., 2019 ).
he amount of cognitive traits’ variance explained by functional connec-
ivity values was quantified as the sum of the squared singular values
orresponding to the significant PLSC components, normalized by the
um of all the squared singular values obtained for each PLSC analysis
 Krishnan et al., 2011 ). The effect of the functional connectivity measure
nd frequency band on the amount of explained connectome-cognition
ovariance was assessed with an ANOVA analysis. 

. Results 

In this study, we analyzed data from 84 subjects in the S1200 release
f the HCP dataset. MEG data consisting of resting-state eyes-opened
ecordings were pre-processed and then source-reconstructed to 148
ortical regions of interest, based on the Destrieux cortical parcellation
see Materials and Methods). The pre-processed MEG data was used to
stimate the Functional Connectivity (FC) between all pairs of regions
ith six functional connectivity measures of interest i.e. AEC, AECc,
LV, PLM, PLI, and wPLI in the five frequency bands. We evaluated
he impact of different functional connectivity measures and frequency
ands on the MEG connectome fingerprinting at the whole-network
evel. We then deepened our investigation by exploring the contribu-
ion of single brain regions and edges to the overall MEG fingerprinting.
inally, we investigated the behavioral significance of MEG functional
onnectomes in relation to their fingerprinting value by performing a
et of PLSC analyses for different functional connectivity measures and
requency bands. 

.1. MEG connectome fingerprinting across FC measures 

We started our MEG connectome fingerprinting exploration by eval-
ating the impact of different connectivity measures on connectome
dentification, across different frequency bands. Simultaneously, we also
5 
nvestigated two scoring methods to quantify functional connectome
dentification. To this aim, we evaluated connectome fingerprinting (or
dentifiability) on four commonly used phase-coupling measures (PLM,
PLI, PLI, PLV) and two commonly used amplitude-coupling measures

AEC, AECc) ( Table 1 ). As identification scores, we used differential
dentifiability (I diff) and success rate (SR) (see Methods). Fig. 2 depicts
he identification performance of the different connectivity measures
nd scoring methods reported for the alpha and beta frequency bands;
he results for the other three bands, i.e. delta, theta, and gamma bands,
re provided in Supplementary Fig. S1. For both I diff and SR, in all the
omparisons (six FC measures and five frequency bands), the observed
true) values were above the maximum of the pooled null-distribution,
nd therefore the obtained p-values are significant and corrected for
ultiple comparisons. We observed large variability of identifiability
easures across the FC measures and bands with I diff and SR ranging

rom 11.6% to 31.7%, and 52.9% to 98.2%, respectively. Across the
requency bands, we observed relatively higher identifiability in the
lpha band (I diff: 22.8% ± 6.7%, SR scores: 82.0% ± 15.9%) and in
he beta band (I diff: 19.2% ± 5.9%, SR scores: 77.3% ± 19.6%). In the
lpha band specifically, we observed higher I diff (25.8% ± 5.9%) and
R scores (84.0% ± 12.8%) in phase-based measures as compared to
mplitude-based measures with relatively lower I diff (16.7% ± 2.8%)
nd SR scores (77.9% ± 20.2%). We also observed that wPLI, PLI, and
ECc are the measures where the identifiability levels are most variable
cross the frequency bands with I diff ranging from 13.7% ± 10.0% in
PLI, 10.6% ± 8.2% in PLI, and 15.3% ± 4.9% in AECc and SR rang-

ng from 37.1% ± 27.3% in wPLI, 32.7% ± 22.8% in PLI, and 34.4%
 18.9% in AECc. Besides, the highest identifiability scores, among the
ost variable measures (i.e. wPLI, PLI, and AECc), were observed in the

entral frequency bands (alpha and beta). Specifically, PLM seems to be
he preferred connectivity measure for connectome identification given
he relatively higher and consistent identification scores (I diff: 28.0% ±
.6%, SR: 94.6% ± 1.9%) observed for this measure across frequency
ands ( Fig. 2 B). We also observe that measures susceptible to spatial
eakage (i.e. AEC and PLV) have lower I diff (AEC: 14.6% ± 0.5% PLV:
6.8% ± 0.9%) and but nearly perfect SR (AEC: 98.0% ± 0.3% PLV:
8.1% ± 0.2) scores across all frequency bands. In addition, we observed
 characteristic change in the identifiability levels of the measures sus-
eptible to spatial leakage (i.e. AEC and PLV) between the two identifi-
ation scores under investigation; relatively higher identifiability score
or SR and lower scores for I diff. 

Furthermore, the delay between each run (or session) is an impor-
ant aspect that might impact the fingerprinting performance. Hence,
n addition to the identification performance of the temporally close
essions, i.e. sessions 1–2 of the MEG HCP data (as stated previously),
e also investigated the fingerprinting performance between sessions
–3 (temporally distant sessions) and compared it with performance of
essions 1–2. The results, as depicted in supplementary Fig. S6, demon-
trate the stability of our fingerprinting analysis across temporally close
nd distant runs (sessions). 

We also investigated if there existed an association between the fac-
ors explored in this work (i.e. subject, frequency bands and FC met-
ics) and the discriminability and reliability of the MEG connectomes,
.e. their subject-wise I diff and I self scores. In order to test this, we con-
ucted a N-way ANOVA analysis (please see Fig. S4) that indicated a
ignificant effect for subject (F(83,1660) = 13.61, p < 0.001), frequency
ands (F(4,1660) = 225.54, p < 0.001), and FC metrics (F(5,1660) = 364.6,
 < 0.001) on individual I diff and I self . Furthermore, we also found a
ignificant interaction effect, specifically between frequency bands and
C metrics in both subject-wise discriminability (F(20,1660) = 55.55,
 < 0.001) and reliability (F(20,1660) = 164.79, p < 0.001). 

.2. MEG connectome fingerprinting: edgewise identifiability 

After exploring fingerprinting at the whole-network level, we then
eepened our investigation by exploring edgewise fingerprinting prop-
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Fig. 2. MEG connectome fingerprints across 
bands and measures. Figure shows the per- 
formance in connectome identification of 
four popular phase-based MEG connectome 
measures (wPLI, PLI, PLV, PLM) and two 
amplitude-based measures (AEC, AECc), across 
five different frequency bands (delta, theta, al- 
pha, beta, gamma). (A) Identifiability matrix 
for the six connectivity measures employed, 
shown for the alpha and beta bands. (B) Bar 
plots showing the summary of identification 
scores employed, i.e., I diff and success rate (SR), 
across the different measures and frequency 
bands. The asterisks denote a significant iden- 
tification score after permutation testing (see 
Methods for details). 

Fig. 3. Edgewise fingerprinting across connec- 
tivity measures and bands. (A) & (C) Edge- 
wise MEG connectivity fingerprints as mea- 
sured by intra-class correlation (ICC), reported 
for AEC, AECc, PLM, and wPLI functional con- 
nectivity measures, and for the alpha and beta 
bands, respectively. (B) & (D) The ICC-average 
within and across the seven Yeo’s resting- 
state network edges, for the alpha and beta 
bands, respectively. (E) The nodal fingerprint- 
ing strength distribution across the five fre- 
quency bands. VIS = visual; SM = sensorimotor; 
DA = dorsal attention; VA = ventral attention; 
L = limbic; FP = frontoparietal; DMN = default- 
mode network. 
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rties. Fig. 3 depicts the edgewise ICC matrices ( Fig. 3 A, 3 C), intra- and
nter-network identifiability patterns ( Fig. 3 B, 3 D), and the nodal finger-
rinting strength distribution across functional connectivity measures of
requency bands ( Fig. 3 E). For this investigation, we report the results
nly for a subset of FC measures, namely AEC, AECc, PLM, and wPLI.
he results from PLV and PLI were similar to the ones obtained from
EC and wPLI, respectively, and are provided in Supplementary Fig.
2. 

Fig. 3 shows that the nodal fingerprinting patterns, both at the edge
evel and the grouped sub-network level, are widespread and specific to
he functional connectivity measure employed. Furthermore, the edge-
ise fingerprinting patterns associated with AECc and PLM connec-

omes depicted a certain degree of spatial specificity, with higher intra-
etwork group-average ICC scores (denoted as average ICC scores). The
lpha band of the AECc measure depicted ‘good’ ICC in the visual sub-
etwork (average ICC score = 0.76) and ‘moderate’ ICC in the ventral-
ttention subnetwork (average ICC score = 0.72); the beta band also
epicted ‘good’ ICC in the visual subnetwork (average ICC score = 0.77)
nd the frontoparietal subnetwork (average ICC score = 0.80). The alpha
6 
and of the PLM measure depicted ‘moderate’ ICC in the visual subnet-
ork (average ICC score = 0.72) and ‘good’ ICC in the somatomotor (av-
rage ICC score = 0.75) and dorsal-attention (average ICC score = 0.75)
ubnetworks. The edgewise fingerprinting patterns in the wPLI measure
ere not spatially specific in the beta band (‘poor’ ICC, average ICC

core < 0.42); the alpha band however depicted ‘good’ ICC in the vi-
ual subnetwork (average ICC score = 0.70). Furthermore, the nodal fin-
erprinting patterns in the AEC measure were relatively lesser marked
han AECc and PLM measures with overall ‘moderate’ ICC (average ICC
cores = 0.64) in both bands. However, the visual and somatomotor
ubnetworks depicted close to ‘good’ ICC (average ICC score = 0.72). 

The nodal fingerprinting strength distribution across frequency
ands is depicted in Fig. 3 E. The distribution of the nodal fingerprint-
ng pattern appears to be specific to frequency bands as well. The nodal
ngerprint strength is relatively higher in the alpha (AEC: 95.4 ± 6.3;
ECc: 96.9 ± 7.0; PLM: 98.2 ± 9.4) and the beta (AEC: 95.8 ± 4.8; AECc:
6.6 ± 7.3; PLM: 95.4 ± 5.6) frequency bands as compared to other fre-
uency bands in most of the measures under investigation. In the PLM
easures, the nodal fingerprinting strength is relatively higher in the
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Fig. 4. Nodal fingerprinting patterns in MEG 

and fMRI. (A) Brain render of ICC subject 
identifiability as nodal fingerprinting strength 
per region reported for three MEG connec- 
tivity measures (AEC, AECc, PLM) and three 
frequency bands (theta, alpha, beta). (B) The 
nodal fingerprinting pattern obtained from the 
fMRI connectomes of the same subjects. The 
nodal fingerprinting strength per region com- 
puted as the sum of columns of ICC edgewise 
matrix and represented at 5th-95th percentile 
threshold. 
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elta (112.2 ± 5.3), theta (111.3 ± 5.2), and gamma (73.9 ± 8.1) band in
ddition to the alpha and beta band as compared to other measures. On
he other hand, relatively lower and spatially unspecific edgewise iden-
ifiability patterns in the wPLI measure result in a relatively lower nodal
ngerprinting strength in most of the frequency bands (delta: 28.1 ± 4.7;
heta: 32.3 ± 4.9; beta: 43.9 ± 5.0; gamma: 13.5 ± 6.6). In the alpha
and, however, nodal fingerprinting strength values are comparable to
hose observed in the other frequency bands (64.5 ± 13.7). 

.3. MEG connectome fingerprinting: nodal fingerprinting scores 

The brain render of the nodal fingerprinting strength for fMRI data
nd three MEG measures (AEC, AECc, and PLM) for theta, alpha, and the
eta band are depicted in Fig. 4 . The figure characteristically highlights
he cortical regions with a relatively higher contribution to the con-
ectome identifiability. We observe spatially localized patterns specif-
cally in the AECc and PLM measures. These patterns are prominently
bserved in the theta and the alpha band and localized to the poste-
ior regions of the brain (temporal, occipital, and parietal regions) in all
he measures. In the AECc measure, the nodal fingerprinting strength
s larger in the temporo-parietal regions including parts of the default-
ode, frontoparietal, and dorsal-attention networks. In the PLM mea-

ure, parieto-occipital regions with larger nodal fingerprinting strength
nvolve the visual, default-mode, and dorsal-attention networks. Inter-
stingly, the beta band for the AECc measure adds the frontal region con-
ributions to the consistent parieto-medial nodal fingerprinting pattern,
pecifically involving the frontoparietal and default-mode networks. In
he PLM measure, the pattern becomes more localized to the somato-
otor region with some extent of localization to the parieto-occipital

egions as we move to the higher frequency beta band ( Fig. 4 A). We
lso observe a high fingerprinting specificity to the precuneus region
f the brain across all the frequency bands of the PLM measure. In the
7 
EC measure we observe relatively lower spatial specificity in the theta
and as compared to the nodal fingerprinting patterns in the theta band
f the AECc and PLM measure. However, the alpha and beta bands of the
EC measure depict notable spatial specificity of the fingerprinting pat-

erns to the temporo-parietal regions of the brain involving frontopari-
tal, default-mode, and dorsal-attention networks. Supplementary Fig.
3 comprehensively depicts the brain render of the nodal fingerprinting
trength for all the six MEG measures (AEC, AECc, PLM, PLV, PLI, and
PLI) and for all the five frequency bands (delta, theta, alpha, beta, and
amma). 

Comprehensively, it is observed that the posterior brain regions, par-
icularly the parieto-occipital lobes and to some extent the temporal
obe, have a central fingerprinting role, particularly at the slower tem-
oral scales (theta and alpha bands). Besides this, a distinctive partici-
ation of frontal (in AECc measure) and somatomotor (in PLM measure)
egions develops as we move from slower (theta, alpha) to faster (beta)
emporal scales (see Supplementary Fig. S3). 

.4. Cross-modality connectome fingerprinting 

We also visualized the nodal fingerprinting pattern from the fMRI
ata, depicted in Fig. 4 B, to conduct a comparative analysis between
he nodal fingerprinting patterns between the two imaging modalities
i.e. MEG and fMRI) and the role of different functional connectivity
easures. The nodal fingerprinting patterns from the fMRI data depict
 notable spatial specificity to the parietal region of the brain specifically
eflecting the higher fingerprinting contribution of ventral-attention,
orsal-attention, and frontoparietal networks (see Fig. 4 B). Further-
ore, the results of the CMNCC investigation (see Methods), as de-
icted in Fig. 5 , reveals interesting cross-modality similarities between
he nodal fingerprinting patterns. The leakage-corrected measures (i.e.
ECc, PLM, PLI, wPLI) depict significant and relatively higher CMNCC
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Fig. 5. Cross-Modality connectome finger- 
printing. The Cross-Modality Nodal Correla- 
tion Coefficient (CMNCC) comparison between 
nodal fingerprinting maps of MEG (AEC, AECc, 
PLV, PLM, PLI, and wPLI) and fMRI data for 
all the five frequency bands (delta, theta, al- 
pha, beta, and gamma). The CMNCC compari- 
son was conducted for three metrics: (i) Nodal 
Fingerprinting Strengths (depicted in Black), 
(ii) Whole brain (depicted in gray), and (iii) 
Network level (depicted in colors associated 
with Yeo networks). The Network Level metric 
only represents the network with highest sim- 
ilarity (i.e. highest CMNCC score) between the 
two modalities. AEC: Amplitude Envelope Cor- 
relation; AECc: Amplitude Envelope Correla- 
tion corrected; PLV: Phase Locking Value; PLM: 
Phase Linearity Measure; PLI: Phase Lag Index; 
wPLI: weighted Phase Lag Index. The asterisks 
denote significant (p-value < 0.05, Bonferroni 
corrected) CMNCC score for the Nodal Finger- 
printing Strength parameter. 
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cores, i.e. more similar cross-modality fingerprinting pattern, for NFS
etric as compared to leakage-uncorrected measures (i.e. AEC and PLV),
here no significant CMNCC scores were observed. In addition, among

he measures with relatively higher CMNCC scores, we observed rela-
ively high cross-modality similarity of fingerprinting patterns at lower
emporal scales (delta and theta) as compared to higher temporal scales
alpha, beta, and gamma). We further found that the visual network,
n general, is prominently identified as the network with highest cross-
odality fingerprinting similarity (high CMNCC scores) across all the
easures and frequency bands. 

.5. Behavioral significance of functional connectomes 

Multivariate correlations between functional connectivity values and
ognitive scores across subjects were assessed with PLSC analyses. We
ound significant connectome-cognition multivariate correlations for all
onnectivity measures but for different frequency bands, with AECc and
LV showing significant correlations in all frequency bands and PLI
howing significant correlations in the beta band only ( Fig. 6 A, Table
1). An ANOVA analysis with the amount of explained connectome-
ognition covariance as dependent variable, and the connectivity mea-
ure (AEC, AECc, PLM, wPLI, PLI, PLV) and band (delta, theta, alpha,
eta, gamma) as independent variables, revealed that the amount of co-
ariance explained by the significant PLSC components depends on the
onnectivity measure used to build the MEG connectomes (connectivity
easure: F(5,16) = 8.10, p = 0.002; frequency band: F(4,17) = 1.27,
 = 0.34). In particular, AECc and PLM connectomes explained the
argest amount of connectome-cognition covariance (average percent-
ge of explained covariance across bands: AECc 58.8%; PLM 51.1%),
hile PLV connectomes explained the least amount (27.8% on aver-
ge). The cognitive saliences associated with the significant PLSC com-
onents were highly variable across connectivity measures and bands,
ndicating that functional connectomes derived from different connec-
ivity measures and across different temporal scales tend to explain dif-
erent cognitive dimensions ( Fig. 6 B). In particular, the cognitive di-
ensions mostly contributing to the connectome-cognition correlation
atterns were impulsivity and spatial orientation for lower frequency
ands (delta, theta), processing speed for middle frequency bands (al-
ha, beta), and episodic memory for the beta band ( Fig. 6 C). The
onnectome-cognition association in the gamma band was less specific
o particular cognitive dimensions ( Fig. 6 C). Finally, a similar PLSC
nalysis was performed for the fMRI-based connectomes and revealed
8 
 significant fMRI-cognition correlation pattern, mainly involving the
pisodic memory, working memory and fluid intelligence dimensions
 Fig. 6 B, 6 C). The amount of explained connectome-cognition covari-
nce was lower for the fMRI (18.0%) compared to the MEG connectomes
 Fig. 6 A). 

. Discussion 

With the advancement in neuroscientific research and the avail-
bility of large public datasets, researchers are now exploring excit-
ng new avenues in the field of brain connectomics. This research area
rovides a supplementary insight in exploring the interconnected neu-
al systems by comprehensively mapping the neural elements and in-
erconnections that constitute the brain ( Fornito and Bullmore, 2015 ).
rain connectome fingerprinting has risen as a novel influential field in
rain connectomics ( Amico and Goñi, 2018 ; Finn et al., 2015 ; Miranda-
ominguez et al., 2014 ) and has opened up a new way of extracting
nd evaluating individual features contained in functional and structural
onnectomes. Researchers are now exploring how connectome-wide pat-
erns evaluated through brain connectomic measures can be leveraged
or potential clinical translational research as, for instance, precision
edicine ( Fernandes et al., 2017 ; Hampel et al., 2019 ). However, the

ccomplishment of such research goals requires a comprehensive under-
tanding of the role of various factors that contribute to brain connec-
ome fingerprinting such as different brain connectivity measures, fre-
uency bands, identification scoring methods, and neuroimaging modal-
ties. 

In this work, we comprehensively investigated the fingerprint-
ng properties of functional connectomes extracted from magnetoen-
ephalography (MEG) data and compared them to fMRI fingerprinting.
e investigated the role of various functional connectivity measures

amplitude and phase coupling), identification scoring methods (differ-
ntial identifiability and success rate), and frequency bands on func-
ional connectome fingerprinting. We, then, deepened our investigation
y evaluating the nodal fingerprinting patterns (edge-level and grouped
ub-network level) to unravel the spatial specificity of brain fingerprints
cross sub-networks and cortical regions. We further extended the study
y conducting a comparative analysis of fingerprinting between fMRI
nd MEG data to develop a cross-modality understanding of connectome
ngerprinting. Finally, we assessed the behavioral significance of MEG
nd fMRI connectomes across functional connectivity measures and tem-
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Fig. 6. Behavioral significance of functional 
connectomes. (A) Percentage of connectome- 
cognition covariance explained by significant 
multivariate correlation components ( p < 0.05) 
obtained from PLSC analyses between 10 ′ 878 
functional connectivity values and 10 cogni- 
tive scores. PLSC components were indepen- 
dently assessed for each functional connectivity 
measure and frequency band. Absent bars in- 
dicate that no significant correlation with cog- 
nition was found for the specific connectivity 
measure and band. The dashed gray line repre- 
sents the percentage of connectome-cognition 
covariance explained by the fMRI connectivity 
data. (B) Cognitive saliences representing the 
cognitive domains contributing the most to the 
connectome-cognition multivariate correlation 
patterns. Small colored dots represent cogni- 
tive domain weights corresponding to the sig- 
nificant PLSC components across connectivity 
measures and bands; large colored dots repre- 
sent the median weight for each cognitive di- 
mension. gray diamonds represent the cogni- 
tive salience of the significant fMRI PLSC com- 

ponent. (C) Repartition of cognitive saliences (absolute weights) across 10 cognitive domains, for different temporal scales. Each pie-chart was generated by con- 
sidering the significant components obtained from the PLSC analyses relative to a given frequency band (independently from the functional connectivity measures). 
The absolute-value cognitive saliences of those significant components were then summed over components to produce 10 summed cognitive weights, each one cor- 
responding to a cognitive domain. Each pie-chart represents the repartition of the summed cognitive weights over the 10 cognitive domains. The cognitive domain 
color coding is as in panel (B), i.e., from red to black in counterclockwise direction: Episodic Memory, Executive Functions, Fluid Intelligence, Language, Processing 
Speed, Impulsivity, Spatial Orientations, Sustained Attention, Verbal Episodic Memory, Working Memory. 
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oral scales, allowing a parallelism between fingerprinting value and
ehavioral significance of the different functional connectomes. 

In our connectome identification, which was stable across tempo-
ally close and distant runs (sessions), we observed interesting differ-
nces between the five frequency bands and the two categories of func-
ional connectivity measures (phase-coupling and amplitude-coupling
easures). When focusing on the AECc, wPLI and PLI measures, our re-

ults indicate a characteristic importance of alpha and beta frequency
ands in fingerprinting identification. This finding, although specific to
ome connectivity measures, might indicate a link between the role of
rain oscillations in human cognition ( Abhang et al., 2016 ; Engel and
ries, 2010 ; Klimesch, 2012 ) and their fingerprinting value. 

The PLM, wPLI and PLI phase-based measures depicted higher iden-
ification scores (I diff) as compared to amplitude-based measures, par-
icularly in the alpha and beta bands, while measures not corrected for
patial leakage (AEC, PLV) showed medium-to-low identifiability scores,
s depicted in Fig. 2 . In particular, it is striking to observe the differ-
nce between I diff and SR for the measures that are not corrected for
patial leakage (AEC, PLV, Fig. 2 B) and demonstrate nearly perfect suc-
ess rate. Notably, a more in-depth investigation on the distributions of
 self and I others values showed that the I self and I others histograms of the
on-leakage corrected MEG measures (AEC and PLV) are shrinked and
hifted towards 1 (please see Fig. S5), indicating both higher within-
nd between-connectome similarities. This might be due to the fact that
ncorrected spatial leakage “smoothes ” the signal across the cortex, and
his effect might propagate onto the functional connectomes, resulting
n higher connectome similarity. Furthermore, the distance between the
 self and I others histograms’ means, as well as the histograms’ standard
eviations, are smaller in non-leakage corrected measures compared to
eakage corrected measures (Fig. S5). The interpretation of this finding
s two-fold: on one hand, the narrowing of the distributions explains the
igh success rates observed for AEC and PLV; on the other hand, the
educed distance between the I self and I others distributions explains the
ow I diff observed for AEC and PLV. Hence, the effect of spatial leakage
n MEG fingerprinting is multifaceted. While it is true that spatial leak-
ge does reduce intra- as well as inter-subject connectome variability,
9 
hich may hinder fingerprinting, a narrow but neat separation between
 self and I others distributions appears to be preserved in non-leakage cor-
ected measures, which allows to achieve good success rates (Fig. S5).
lthough it is difficult to identify the reasons for the latter effect, it might
e that spatial leakage contains some subject-specific components, possi-
ly linked to individual cortical morphology, that preserve subject iden-
ifiability despites the increased inter-subject connectome similarity. In-
eed, previous work showed high identifiability value of brain morpho-
ogical features ( Mansour et al., 2021 ). The I diff score consistently ac-
ounts for general increases of connectome similarity penalizing the I self 
core by the I others term. These considerations suggest that I diff is more
ensitive to identification changes than the success rate as it accounts
or both inter- and intra-individual variability. Collectively, these find-
ngs suggest that fingerprinting estimation is dependent on the nature of
unctional connectivity measure (amplitude- or phase-coupling; with or
ithout spatial leakage correction) and the frequency band of estima-

ion, as also reported in an EEG-fingerprinting research ( Fraschini et al.,
019 ). Our study further highlights that the choice of the identification
coring method (I diff, SR) also plays an important role in this context,
pecifically in quantifying and understanding the true fingerprinting po-
ential. However, please note that Idiff is a simple (although straightfor-
ard) indicator of subject identification that does not directly consider

nter- and intra-subject variability of functional connectivity similarity.
uture work should assess the best strategies to quantify identifiabil-
ty, accounting for the spread of the Iothers term in relation to the Iself
core. 

We extended our fingerprinting investigation from whole-network
evel to edge-level to examine the identification potential of a brain node
ased solely on the characteristic functional connectivity patterns across
he subjects in test-retest condition. Our results based on intraclass cor-
elation show some spatial specificity and functional networks (FNs)
atterns. We observed that the visual network was markedly identifi-
ble across all the measures in the alpha and beta bands; in addition with
omatomotor and dorsal-attention network in the PLM measure, limbic,
rontoparietal, and ventral-attention networks in the AECc measure, and
omatomotor in AEC measure. These findings advance the idea that the
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isual network is primarily more involved in the edgewise identifiability
n a test-retest condition and thus holds a strong potential for accounting
nter-subject variability. Furthermore, in terms of frequency bands, the
verall identification pattern becomes relatively less pronounced in the
eta band as compared to the alpha band with a few exceptions. This
ight further indicate a link between the role of brain oscillations in
uman cognition and the fingerprinting patterns associated with them. 

Another crucial aspect of our investigation was evaluating the nodal
ngerprinting strength to characterize and visualize the fingerprinting
otential of cortical regions. Our investigation started with assessing the
odal fingerprinting strength distribution across all the five frequency
ands. The findings depicted in Fig. 3 E reveals the characteristic depen-
ence of nodal fingerprinting strength on frequency bands with promi-
ently higher strength distributions in the alpha and beta bands. This
nding is coherent with our previous results which highlights the link
etween the role of brain oscillations in human cognition and the fin-
erprinting measures associated with them. Furthemore, the findings
rom the brain render visualization of the nodal fingerprinting strength
s depicted in Fig. 4 , revealed that the nodal fingerprinting patterns
ave characteristic cortical specificity. This specificity was primarily
bserved in the posterior regions of the brain, specifically the parieto-
ccipital regions and to some extent the temporal region at lower fre-
uency scales. From a network perspective, higher fingerprinting con-
ribution of default-mode, dorsal-attention, and frontoparietal networks
as observed. These findings illustrate a strong agreement between the

est-retest conditions at these cortical regions (or functional networks)
nd thus accentuates their strong potential in future fingerprinting re-
earch ( Amico and Goñi, 2018 ). 

Another aspect of our fingerprinting investigation was to discern if
he fingerprinting patterns are shared across neuroimaging modalities.
ur analysis demonstrated that irrespectively of the disparate nature
f neuroimaging modalities in consideration, there exists a certain de-
ree of similarity in the nodal fingerprinting patterns between MEG and
MRI. This similarity was prominently and significantly observed only in
eakage-corrected measures (AECc, PLM, PLI, wPLI) for the nodal finger-
rinting strength factor.. Additionally, we also report a higher similarity
t lower temporal scales (delta and theta) between the fingerprinting
atterns in the MEG and fMRI data for the NFS metric. This finding par-
ially agrees with previous studies ( Brookes et al., 2011 ; Garcés et al.,
016 ; Hipp et al., 2012 ; de Pasquale et al., 2010 ) where functional con-
ectivity similarities between MEG and fMRI were evident in the theta,
lpha, beta, and gamma bands. On the contrary, the delta band pre-
ented smaller similarities. However, it is important to note that our
ork does not directly investigate the cross-modality similarity of func-

ional connectivity, but instead explores the cross-modality similarity
f connectome identifiability patterns. Furthermore, the spatial distri-
ution of fingerprinting patterns were observed to be specific to the
arietal region of the brain in both MEG and fMRI. Results from the
MNCC metric at the network-level further revealed the characteristic
ccurrence of the visual network to be the most identifiable across the
odalities for all measures and frequency bands. This finding is consis-

ent with several other comparative studies on MEG and fMRI modalities
hich have demonstrated a high overlap of functional interactions in the
osterior region of the brain ( Power et al., 2013 ; Tewarie et al., 2014 );
pecifically in the occipital lobe ( Lankinen et al., 2018 ; Liljeström et al.,
015 ) between the two modalities. Therefore, our current findings imply
 degree of spatial concordance between the nodal fingerprinting pat-
erns across the two imaging modalities. The divergences between the
ross-modality similarities of functional connectivity and identifiability
atterns illustrate the complexity of the relationship between hemody-
amics and electrophysiology ( Hipp and Siegel, 2015 ). 

A primary motivation for performing fingerprinting analyses is to
emonstrate that individual connectomes are stable within individuals
nd unique across individuals and thus may be useful for predicting
ndividual differences in behavior. To unravel this last aspect, we inves-
igated the behavioral significance of MEG connectomes across differ-
10 
nt functional connectivity measures and frequency bands. Our results
emonstrate that MEG functional connectomes capture inter-individual
ifferences in cognitive performances, and that the amount of explained
nter-subject cognitive variability depends on the connectivity measure
nd frequency band of the individual connectomes. In particular, the
onnectivity measures that, on average, allowed better subject identi-
ability as quantified with I diff score (namely, AECc and PLM) were
he same ones that carried the largest behavioral significance, as ap-
arent from the visual comparison of Fig. 2 B and Fig. 6 A. Moreover,
he connectivity measures with lower I diff and SR fingerprinting scores
n all expect alpha and beta bands (namely, wPLI and PLI) were also
he ones carrying the least behavioral information, with no significant
onnectome-cognition multivariate correlation found for the wPLI and
LI connectomes in the delta, alpha and gamma bands. These findings
ighlight a certain degree of correspondence between fingerprinting and
ehavioral relevance of MEG connectomes, particularly with respect to
he chosen functional connectivity measure. However, differences exist.
lpha-band PLM, wPLI and PLI connectomes demonstrate high finger-
rinting value but limited behavioral significance. Similarly, AEC and
LV connectomes show perfect SR-identifiability but moderate behav-
oral significance, pointing out a partial dissociation between connec-
omes’ test-retest identifiability and behavior prediction already shown
n fMRI connectivity data ( Noble et al., 2017 ; Shirer et al., 2015 ). These
onsiderations highlight the complex and still unclear relationship be-
ween FC reliability, FC inter-subject variability and FC association with
ehavior, which need to be further investigated in future work. 

Finally, our PLSC analyses across imaging modalities (MEG, fMRI)
nd frequency bands showed how the association between FC and
ognitive domains may depend on the temporal scale of the func-
ional connectomes. In particular, MEG functional connectivity in slower
emporal scales (delta, theta bands) was mainly associated with self-
egulation/impulsivity and spatial orientation, while faster temporal
cales (alpha, beta bands) with processing speed/executive functions,
emory and attention performances. The behavioral significance of

amma-band functional connectivity seems to be less specific to sin-
le cognitive domains. While these results need to be confirmed and
xtended within more far-reaching and dedicated studies ( Buzsáki and
raguhn, 2004 ), few general considerations can be done. Delta oscil-

ations have been implicated in evolutionarily old processes such as
omeostatic and motivational processes ( Knyazev, 2012 ) as well as
mpulsivity ( Wu et al., 2018 ), while theta oscillations are associated
ith spatial navigation and memory ( Korotkova et al., 2018 ). On the
ther side, alpha and beta bands’ oscillations play an active role in
nformation processing, attention and top-down control mechanisms
 Engel and Fries, 2010 ; Klimesch, 2012 ), which is partially reflected in
ur connectome-cognition correlation patterns. In our analyses, ultra-
low fMRI connectomes are mainly related to memory and fluid intelli-
ence, recollecting previous works ( Amico and Goñi, 2018 ; Finn et al.,
015 ). Intriguingly, the amount of connectome-cognition covariance ex-
lained by MEG data was larger than the covariance explained by fMRI
ata, suggesting that large-scale electrophysiological connectivity pat-
erns at rest might have stronger behavioral relevance than hemody-
amic measures. In addition, possible overlaps between MEG and fMRI
n linking functional connectivity with the same or different behavioral
eatures should be further explored. Future studies should further inves-
igate the relationship between the brain circuits contributing the most
o subject identifiability and those contributing the most to behavior
rediction, to fully elucidate the link between identifiability and behav-
oral significance ( Finn and Rosenberg, 2021 ). 

Brain fingerprints are influenced by many factors: extraction of the
ndividual connectivity information, choice of the functional connec-
ivity measure, specific preprocessing pipelines, impact of artifacts (i.e.
patial leakage). Owing to the temporal richness of MEG data we were
ble to dig deeper into all these contributions to brain fingerprinting,
nd partially separate them throughout our analysis. The findings of
ur study do indicate a strong potential of MEG connectome finger-
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rinting by demonstrating a robust and accurate subject identifiability.
urthermore, our extended investigation on cross-modality (fMRI/MEG)
ngerprints provides preliminary evidence of a certain degree of spatial
oncordance of fingerprinting patterns across MEG and fMRI data. These
ndings might pave the way to developing a cross-modality connectome
ngerprinting paradigm for reliable and robust precision medicine ap-
lications. 

This study has limitations. In our study we conducted an exhaustive
nalysis of the role of functional connectivity measure in estimating fin-
erprinting by evaluating six prominently used amplitude- and phase-
ased coupling methods. However, we did not investigate the role of
ffective connectivity on fingerprinting; future studies should explore
ur framework with a more diverse set of connectivity measures. We
nly investigated an epoch length of 8 s in our work; It would be in-
eresting to see the effects of various epoch lengths on the functional
onnectomes and derived fingerprints in future studies. The choice of
igh-pass filter (1.3 Hz) and the delta band range (0.5–4 Hz) in our
ork may have impacted the fingerprinting potential in the delta band

pecifically. In addition, we only investigated the fingerprinting in a nar-
ow gamma band range (i.e. 30–48 Hz); future studies should explore
ngerprinting in full delta and gamma band range as well. In the present
ork we did not consider different source reconstruction strategies and

patial-leakage correction methods for obtaining source-localized MEG
ata. The familial relationships in the MEG dataset and its relationship
o fingerprinting should be further investigated; the impact of different
arcellation schemes on MEG fingerprinting should also be explored.
ecent studies have shown that several choices during MEG data pre-
rocessing steps (i.e.forward/inverse model, beamforming method, and
ifferent implementation software) can affect the results in source space
 Gross et al., 2013 ; van Diessen et al., 2015 ). Furthermore, in this work
he cross-modality fingerprinting investigation was restricted to MEG
nd fMRI data. Building from our cross-modality framework, future
tudies should explore the extent of fingerprint concordance between
ifferent neuroimaging modalities including EEG, DTI, PET among oth-
rs. Another interesting avenue involves the maximization of connectiv-
ty fingerprints in MEG functional connectomes, similarly to ( Amico and
oñi, 2018 ). Finally, it would be interesting to extend the proposed fin-
erprinting framework to task-specific data to explore the relationship
etween fingerprinting patterns and task-related functional organiza-
ion. 

. Conclusion 

In conclusion, we have reported an exhaustive investigation of fin-
erprinting estimation using MEG data where we explored the relation-
hip between brain fingerprints and various factors including functional
onnectivity measures, frequency bands, spatial leakage, identification
coring methods, neuroimaging modality, and behavioral significance.
e explored the contributions on MEG fingerprints from all these fac-

ors, and found that its accurate individual estimation requires care-
ul consideration on these features, especially on the FC measure and
requency band chosen. We hope that future research in brain connec-
omics will benefit from this first comprehensive (albeit preliminary)
verview on the brain fingerprinting properties of MEG data. 
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