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A B S T R A C T   

Introduction: : An efficient readily employable risk prognostication method is desirable for MM in settings where 
genomics tests cannot be performed owing to geographical/economical constraints. In this work, a new Modified 
Risk Staging (MRS) has been proposed for newly diagnosed Multiple Myeloma (NDMM) that exploits six easy-to- 
acquire clinical parameters i.e. age, albumin, β2-microglobulin (β2M), calcium, estimated glomerular filtration 
rate (eGFR) and hemoglobin. 
Materials and Methods: : MRS was designed using a training cohort of 716 NDMM patients of our inhouse MM 
Indian (MMIn) cohort and validated on MMIn (n=354) cohort and MMRF (n=900) cohort. K-adaptive parti
tioning (KAP) was used to find new thresholds for the parameters. Risk staging rules, obtained via training a J48 
classifier, were used to build MRS. 
Results: : New thresholds were identified for albumin (3.6 g/dL), β2M (4.8 mg/L), calcium (11.13 mg/dL), eGFR 
(48.1 mL/min), and hemoglobin (12.3 g/dL) using KAP on the MMIn dataset. On the MMIn dataset, MRS out
performed ISS for OS prediction in terms of C-index, hazard ratios, and its corresponding p-values, but performs 
comparable in prediction of PFS. On both MMIn and MMRF datasets, MRS performed better than RISS in terms of 
C-index and p-values. A simple online tool was also designed to allow automated calculation of MRS based on the 
values of the parameters. 
Discussion: : Our proposed ML-derived yet simple staging system, MRS, although does not employ genetic fea
tures, outperforms RISS as confirmed by better separability in KM survival curves and higher values of C-index on 
both MMIn and MMRF datasets. 
Funding: : Grant: BT/MED/30/SP11006/2015 (Department of Biotechnology, Govt. of India), Grant: DST/ICPS/ 
CPS-Individual/2018/279(G) (Department of Science and Technology, Govt. of India), UGC-Senior Research 
Fellowship.   

Introduction 

Staging of disease in oncology practice has been a useful tool for risk 
stratification as it helps in identifying patients requiring intense therapy 
upfront and/or a higher monitoring frequency during the follow-up 
periods. The first staging system for multiple myeloma (MM) was pro
posed by Salmon and Durie in 1975 that divided patients into three risk 
categories with differential overall survival [1]. Subsequently, in 2005 
an International staging system (ISS) based on two simple laboratory 
parameters of serum albumin and beta2-microglobulin (β2M) was 

proposed by Greipp PR and colleagues [2]. Serum albumin reflected the 
normalcy of the protein compartment and serum β2M reflected the 
tumor burden. With the development of novel agents such as immuno
modulators (IMIDs) and proteasome inhibitors (PSI) for treatment of 
MM, the landscape of responses and survival changed drastically [3,4]. 
In addition, the advances in molecular biology allowed investigators to 
look closely at the genomic changes in MM and, especially, in subgroups 
of patients with poor outcome. This led to the inclusion of cytogenetic 
aberrations into the staging system used for MM and thereby, emerged 
the Revised-ISS (RISS) [5]. The survival data used for developing RISS 
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consisted predominantly of patients who were treated with immuno
modulatory agents. As the new class of drugs, i.e., the PSI made their 
way into the treatment of MM, some of the cytogenetic aberrations like t 
(4;14) included in the RISS seem to lose their poor prognostic impact 
[6]. From an academic and research perspective, it is desirable to 
characterize subset of patients with poor clinical outcome to develop 
effective therapies but in clinical practice, it is desirable to have a 
staging system that is based on clinical and laboratory parameters that 
are easily accessible in healthcare setting across the globe. 

In recent times, data analytics including advanced machine learning 
methods are being used to extract valuable information from medical 
records. Machine learning algorithms have been shown to be useful in 
devising risk stratification system in type-2 diabetic patients by Ricci 
and colleagues [7], in cardiovascular disorders by Ahuja and Schaar [8], 
in prostate cancer by Varghese [9], in resected gastric cancer[10] and in 
nasopharyngeal carcinoma [11]. In this study, we used machine 
learning methods to develop a new risk stratification system, namely, 
Modified Risk Staging (MRS) for MM using six easy-to-acquire labora
tory parameters: albumin, β2M, calcium, eGFR, hemoglobin along with 
age. The model was developed on a training dataset of patients with 
newly diagnosed multiple myeloma (NDMM) and validated on two test 
datasets. Rigorous comparison of the proposed risk staging model with 
ISS and RISS was undertaken to check its efficacy on the predictions of 
progression free survival (PFS) and overall survival (OS). 

Methods 

Study population 

The computerized database search on June 28, 2019 with keyword 
‘ICD C90’ returned 1675 entries of patients registered at the Institute 
Rotary Cancer centre, All India Institute of Medical Sciences (AIIMS). A 
total of 253 patients had plasma cell dyscrasia other than MM, 132 
patients were lost to follow up after a single visit (n=111) or before first 
response could be assessed (n=21), and 121 patients’ records had 
inadequate clinical and/or laboratory parameters. Patients who died 
within 16 weeks of diagnosis were labelled as early deaths (n=99) and 
were excluded from the staging algorithms. Remaining cohort of 1070 
Indian patients of MM, referred to as the MMIn cohort, was evaluated in 
this study (Supplementary Fig. S1). An independent cohort of 900 pa
tients of MM enrolled in Multiple Myeloma Research Foundation 
(MMRF) repository, for which the clinical and laboratory data is avail
able publicly, was used for validation. 

Clinical and laboratory characteristics 

The clinical, laboratory, and radiological data was obtained from the 
medical case files. A subset of patients, for whom the molecular data 
(n=627) was available, were assigned RISS as described previously [12]. 
Treatment response was assessed as per the International uniform 
response criteria for multiple myeloma [13]. Progression free survival 
(PFS) was calculated from the date of diagnosis until progression or 
death. Overall survival (OS) was calculated from the date of diagnosis 
until death due to any cause or was censored at last follow-up. Clinical 
and laboratory features of the patients are given in Supplementary Table 
S1. 

Design strategy 

Patients (n=1070) in MMIn were randomly split in the ratio of 67:33 
as training (n=716) and test cohorts (n=354). The test cohort did not 
have any missing value. In the training cohort, 41 patients (5.7% of 716 
patients) had one or two missing values that were imputed with the 
median value of the parameters. The training data was used to develop 
the proposed staging system called Modified Risk Staging (MRS) and the 
test dataset was used to evaluate the correctness of the MRS. The staging 

system was then validated on MMRF data. No missing imputation was 
applied on the test cohort or the MMRF dataset. Complete MRS design 
strategy, shown in Fig. 1, is explained below. 

Initially seven parameters, i.e., albumin, β2M, calcium, eGFR, he
moglobin, lactate dehydrogenase (LDH), and age were evaluated for 
designing MRS. β2M and LDH levels are reflective of tumor burden and 
serum albumin, hemoglobin, calcium and creatinine are reflective of the 
bone and renal homeostasis. eGFR was calculated from creatinine con
centration using MDRD eGFR equation [14]. LDH values were brought 
to a common scale by multiplying each entry by 280 and dividing it by 
the upper limit of LDH provided for that particular entry. For each 
parameter, patients were initially divided into high-risk and low-risk 
groups using the well-established cut-offs of these parameters. Estab
lished thresholds for albumin and β2M are derived from ISS [2] and for 
eGFR, calcium, hemoglobin are derived from revised IMWG criteria 
[15]. Log-rank test on the Kaplan-Meier curves yielded significant 
p-values for all the parameters except LDH which was, therefore, not 
used further (Table 1). Next, K-adaptive partitioning (KAP) [16] algo
rithm was used to find new threshold values for the six parameters. KAP 
was performed on the training patients’ parameters yielding two 
threshold values for each parameter, one from PFS and the other from 
OS analysis. The threshold with lower p-value of the two was chosen as 
the new cut-off for each parameter. 

For the cumulative integration of parameters into risk staging, 
weights were assigned to each parameter using their respective hazard 
ratios (HR) for PFS and OS obtained from the univariate Cox- 
proportional hazard test on the training data (Supplementary Table 
S2). For each parameter, the highest of the two HR values obtained from 
PFS and OS was chosen and normalized using ‘minmax’ scaling in the 
range of 1 to 4. The scaled HR values were assigned as the respective 
weights of each of the parameters (Table 1). This captures the relative 
impact of each parameter on the patients’ survival. Next, a new score for 
each patient was calculated by adding the weights of all those param
eters that had values (in the respective patient) beyond the threshold 
defined for the high-risk group. These patient scores were used to 
compute an adjacency matrix of 716 rows and 716 columns (columns 
are features), where each row corresponds to one patient and each entry 
in the row is the absolute difference between the score of that patient 
with each of the 716 patients including self. BIRCH (Balanced Iterative 
Reducing and Clustering using Hierarchies) Clustering, an unsupervised 
ML method, was applied on the adjacency matrix to cluster the patients 
of the training dataset into three risk groups [17]. Each cluster of pa
tients was assigned one label: Stage-1 (low-risk), Stage-2 (inter
mediate-risk), or Stage-3 (high-risk). Initially assigned risk stages via 
BIRCH clustering on training patients were used as ground truth labels. 
BIRCH is an unsupervised clustering algorithm that works on the entire 
data. It does not provide rules that can be employed on any prospective 
subject to determine its risk stage. Hence, there was a need to obtain 
rules of risk staging. At the same time, a supervised classifier cannot be 
trained initially, because there is no risk stage-label. A novel method
ology is employed, wherein the risk stage labels provided by BIRCH 
were used as ground truth class labels (risk stages) on the training data 
to train a J48 classifier (a rule-based supervised decision-tree classifier). 
The trained J48 classifier provided the rules in terms of laboratory pa
rameters and age for the identification of risk groups, labeled as MRS-1 
(low risk), MRS-2 (intermediate-risk), and MRS-3 (high-risk) (Fig. 2). 
The risk stage assigned by the J48 tree was considered the actual risk 
class for each patient. All the patients in the test dataset were also 
assigned to one of the MRS groups using the J48 rules. These MRS 
groups were then analyzed for OS and PFS, and compared with those 
obtained with the ISS and RISS. 

A. Farswan et al.                                                                                                                                                                                                                                



Translational Oncology 14 (2021) 101157

3

Results 

Clinical and laboratory characteristics of myeloma patients 

The baseline demographic and laboratory features of patients are 
given in Supplementary Table S1; the training and the test cohorts were 
comparable in baseline demographic, laboratory, and clinical parame
ters (Supplementary Table S1). All the patients received novel agents 
(IMIDs:thalidomide or lenalidomide and/or PSI i.e. bortezomib) either 
as primary or maintenance therapy and dexamethasone. 56.5% of pa
tients received triplet regimen. With a median follow up period of 166 
weeks (range: 14–961 weeks), 626 patients had progressed and 372 
died; the median PFS and OS of the entire cohort was 117 weeks and 166 
weeks, respectively. 

Patients in the training cohort (n=716) were initially stratified into 
high-risk and low-risk groups based on the new thresholds deduced by 
KAP algorithm that yielded better separability (lower p-values) between 
the two groups (Table 1). Weights assignment to each parameter on a 
scale of 1 to 4 led to the highest weight of 4 to hemoglobin and 2.85 to 
β2M and age, indicating them to be the important prognostic factors for 
risk stratification (Table 1). The trained J48 classifier yielded the rules 
for the risk stage assignment (Fig. 2A) as well as ten-fold cross-validation 
accuracy of 96.5% and the weighted-average ROC area of 97.5%. The 
patients were assigned labels, MRS-1 (Low-risk), MRS-2 (Intermediate- 
risk) and MRS-3 (High-risk) using the rules obtained from the J48 
classifier. An online version of the MRS calculator (Supplementary Fig. 
S2) has also been developed. It calculates the risk stage of the patient 
based on the values of the six parameters, age, albumin, β2M, calcium, 

Fig. 1. Workflow for the development of Modified Risk staging (MRS) system for Multiple Myeloma.  

Table 1 
Comparison of established and proposed cut-offs for laboratory parameters for stratification of patients for progression free survival (PFS) and overall survival (OS) in 
training data (n=716 patients) using Kaplan Meier analysis and the weights assigned to the laboratory parameters for calculation of score.     

PFS OS  

Parameter Established 
Threshold value 

Proposed 
Threshold value 

p-value with 
established 
threshold 

p-value with 
proposed 
threshold 

p-value with 
established 
threshold 

p-value with 
proposed 
threshold 

Weights assigned after 
univariate Cox Hazard 

analysis 

Age >65 >67 0.19 0.016 8.7e-4 1.86e-5 2.85 
Albumin ≤ 3.5 ≤ 3.6 0.59 0.089 0.06 2.7e-3 1 

β2M ≥ 5.5 ≥ 4.8 5.41e-6 5.81e-6 5.6e-6 8.78e-8 2.85 
Calcium ≥ 11 ≥ 11.13 0.011 6.5e-3 0.02 0.029 1.07 

eGFR ≤ 40 ≤ 48.1 0.03 0.012 7.9e-3 1.2e-3 1.14 
Hb ≤ 10 ≤ 12.3 0.012 4.88e-4 0.027 1.2e-4 4.0 

LDH < 280 < 95 0.66 0.96 0.52 0.43 – 

*Most significant p-values under each category are highlighted in bold. 
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eGFR and hemoglobin. It also displays median PFS and OS in weeks for 
the patient depending on his assigned risk group. Median PFS and OS 
have been calculated on the combined data (n=1970 patients) of MMIn 
and MMRF cohort. 

Results on the training (n=716), test (n=354) and complete MMIn cohort 
(n=1070) 

Largest proportion of training cohort (n=716) were assigned to MRS- 
2 (n=332, 46.36%), followed by MRS-3 (n=199, 27.80%) and MRS-1 

Fig. 2. A- Hierarchical rule based tree structure to assign data samples to MRS-1, MRS-2 and MRS-3 groups. Parameters: Age: Age; Alb: Albumin; β2M: beta2- 
macroglobulin; Ca: Calcium; eGFR: estimated glomerular filtration rate and Hb: hemoglobin. B- UMAP scatter plot of training data depicting the three labels 
identified by J48 classifier rules and the four mismatched patients (highlighted in circles). 
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(n=185, 25.84%). Results of the median PFS on MRS groups (p=6.28e- 
6) and ISS groups (p=1.25e-5) as well as of median OS on MRS groups 
(p=8.15e-10) and ISS groups (p=2.03e-5) show better performance of 
MRS than ISS (lower p-values; Supplementary Table S3). Similar find
ings were obtained on the test cohort (n=354; Supplementary Table S3). 
Univariate Cox analysis of the entire patient cohort (n=1070, Supple
mentary Table S4), revealed increased risk of progression and mortality 
for age>67 years, albumin≤3.6, β2M≥4.8, calcium≥11.13, eGFR≤48.1 
and hemoglobin≤12.3. Using MRS, the largest proportion of patients 
were placed in MRS-2 (n=511, 47.76%) followed by MRS-1 (n=281, 
26.26%) and MRS-3 (n=278, 25.98%). KM survival analysis of MRS 
groups indicated statistically significant difference in PFS between MRS- 
1 and MRS-2 groups (p=0.0012) and between MRS-2 and MRS-3 groups 
(p=0.0055). For ISS, the difference was significant between ISS-2 and 
ISS-3 groups (p=1.118e-6), but not between ISS-1 and ISS-2 groups 
(p=0.46). For RISS, there was statistically significant difference between 
RISS-2 and RISS-3 (p=5.6e-7) but not between RISS-1 and RISS-2 
(p=0.96). KM survival analysis of MRS groups further revealed statis
tically significant difference in OS between MRS-1 and MRS-2 groups 
(p=5.9e-9) and between MRS-2 and MRS-3 groups (p=0.001). For ISS, 
the difference in OS was significant between ISS-2 and ISS-3 groups 
(p=3.12e-6) but not between ISS-1 and ISS-2 groups (p=0.118) and. For 
RISS, there was statistical difference in OS between RISS-2 and RISS-3 
groups (p=8.32e-9), but was not significant between RISS-1 and RISS- 
2 groups (p=0.2) (Fig. 3). Results of multivariate Cox hazards model 
are also shown in Supplementary Table S5. 

The C-Statistic computed on MRS and ISS demonstrate slightly better 
performance of MRS than ISS with respect to PFS and OS. C-Statistic for 
MRS was 0.57 (HR=1.34, 95% CI=1.20–1.5, p=1.9e-7) for PFS and 0.63 
(HR=1.79, 95% CI=1.54–2.06, p=5.17e-15) for OS as compared to 0.57 
(HR=1.36, 95% CI=1.23–1.52, p=9.9e-9) and 0.60 (HR=1.56, 95% 
CI=1.35–1.8, p=9.22e-10) for ISS (Fig. 3). RISS was available for only 
627 patients, hence, MRS stages were determined separately for these 
patients. C-statistic was better for MRS with values of 0.57 (HR=1.38, 
95% CI=1.17–1.62, p=9e-5) for PFS and 0.63 (HR=1.90, 95% 
CI=1.53–2.35, p=6.3e-9) for OS as compared to 0.56 (HR=1.61, 95% 
CI=1.29–2.00, p=2e-5) and 0.60 (HR=2.27, 95% CI=1.72–3.00, p =
8.73e-9) for RISS (Fig. 3). 

Results on the MMRF cohort 

MRS was further evaluated by comparing it with ISS and RISS using 
the MMRF dataset. ISS was available for 900 patients and RISS was 
available for 703 patients. In MMRF cohort, majority of the patients 
were placed in MRS-2 (n=405, 45%) followed by MRS-1 (n=348, 
38.67%) and MRS-3 (n=147, 16.33%). In the univariate Cox hazard 
analysis of the MMRF data, risk of progression and mortality was 
increased for age>67 years, β2M≥4.8, albumin≤3.6, hemoglobin≤12.3, 
eGFR≤48.1 and calcium≥11.13 (Supplementary Table S4). Results of 
the median PFS on MRS groups (p=3.11e-11), ISS groups (p=7.35e-12), 
and RISS groups (p=1.21e-6) as well as of median OS on MRS groups 
(p=6.00e-13), ISS groups (p=9.28e-14), and RISS groups (p=1.23e-9) 
show comparable performance of MRS than ISS and RISS (comparable p- 
values; Supplementary Table S3; Fig. 4). The risk of progression and that 
of mortality was increased for MRS 2vs1, MRS 3vs1, ISS 2vs1, ISS 3vs1, 
RISS 2vs1, and RISS 3vs1 (Fig. 4). The C-Statistic for MRS in MMRF data 
is 0.60 (HR=1.60, 95% CI=1.39–1.82, p=6.01e-12) for PFS and 0.65 
(HR=2.09, 95% CI=1.71–2.56, p=8.50e-13) for OS as compared to 0.61 
(HR=1.54, 95% CI=1.37–1.74, p=2.8e-12) and 0.667 (HR=2.04, 95% 
CI=1.68–2.47, p=2.3e-13) for ISS; 0.58 (HR=1.67, 95% CI=1.36–2.06, 
p=9.60e-7) for RISS and 0.62 (HR=2.38, 95% CI=1.76–3.23, p=1.75e- 
8) for RISS, respectively. Results of multivariate Cox hazards model are 
also shown in Supplementary Table S6. The 5-year OS for the complete 
MMIn data (n=1070) was 85.82% for MRS-1, 61.73% for MRS-2 and 
48.78% for MRS-3 (Table 2). The difference in the percentages of the 5- 
year OS and median OS for different risk groups indicated that the 

groups were significant. A similar stratification was achieved when the 
MRS model was applied on the MMRF test dataset. The 5-year OS for 
MMRF data was 79.06% for MRS-1, 66.66% for MRS-2 and 41.91% 
which is quite comparable to that obtained in the MMIn data. 

For MMRF data, 5-year OS was 57.48% for RISS-1, 70.49% for RISS-2 
and 35.27% for RISS-3 (Table 2) which suggested some anomaly since 
RISS-1 should have a higher OS as compared to RISS-2. This anomaly 
may be because of assigning a much larger number of patients to RISS-2 
having greater OS time as compared to RISS-1. 

Discussion 

The advent of immunomodulatory drugs and PSI has considerably 
improved treatment outcomes in MM and hence, the current risk strat
ifications based on ISS and RISS need to be relooked at. ISS is a simple 
model based on two laboratory parameters of serum-albumin and β2M, 
but is largely based on data from patients treated in the pre-IMID era and 
is not very informative on PFS in NDMM patients [2]. Since the length of 
PFS is an important predictor of long-term OS, a better model to assess 
PFS is desirable [12]. The RISS for MM takes into consideration the 
molecular abnormalities and is based on data from patients treated with 
either IMIDS or PI, or both and is informative on PFS as well as OS [5]. 
However, many molecular aberrations such as 1q gain and chromo
thripsis that adversely affect outcome in MM have been overlooked and t 
(4;14) included in RISS has lost significance in patients treated with 
triplet regimens [6,18]. The preferred frontline treatment for MM is 
triplet regimen consisting of an IMID, PI and steroid regardless of mo
lecular aberrations or risk stratification. The targeted therapy in MM is 
reserved for patients with RAS and BRAF mutations in progressive dis
ease and relapsed refractory setting, and the upfront molecular char
acterization adds to the cost of healthcare in clinical settings. It is, thus, 
desirable to develop simple risk staging models for MM to enable judi
cious use of healthcare resources reserving the molecular analysis for 
patients who progress or relapse on frontline therapy and in setting of 
clinical trials when a targeted therapy is intended to be used. 

Performance of MRS as compared to RISS and ISS 

On the MMIn dataset, the proposed MRS performed better than ISS in 
prediction of OS in terms of C-index, HR, and p-values, while the per
formance in PFS was comparable. The performance of MRS was superior 
to RISS in terms of C-index and p-values. On the MMRF dataset, the 
performance of MRS was superior to RISS in terms of C-index and p- 
values, but was comparable to ISS. The performance on MMRF dataset 
indicated that there may be nuances with respect to ethnicity and race as 
the population of MMIn and MMRF dataset is different in terms of 
ethnicity and race. The algorithm was trained on MMIn dataset using the 
KAP-proposed thresholds on MMIn dataset while the developed MRS 
model was only tested on the MMRF dataset. 

Specific characteristics of different staging systems 

Levels of albumin and β2M are significant in ISS staging method, 
while LDH along with albumin and β2M are significant in RISS staging 
method (Supplementary Table S8). LDH was not observed to be signif
icant in our preliminary findings and was, therefore, excluded from MRS 
staging. eGFR although significant came lower in the tree. The possible 
reason could be that renal dysfunction gets reversed in a significant 
number of patients of MM treated with novel agents as opposed to 
alkylating agents used in the past to treat MM. Age remained a signifi
cant parameter of outcome in the new staging as well. In MRS, none of 
the deranged parameters individually dominated the underlying risk of 
death. For example, when the level of hemoglobin was less than 12.2 
and β2M was greater than 4.775, then for eGFR levels less than 50.7 and 
albumin and calcium levels greater than 3.6 and 11.13 respectively, the 
patient was placed in the MRS-3 (High risk) group. However, even if the 
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Fig. 3. A, B, C- Progression-Free Survival in patients with MM from MMIn cohort (n=1070) stratified by the proposed MRS (n=1070), ISS (n=1070) and RISS 
(n=627), respectively. D, E, F- Overall Survival in patients with MM from MMIn cohort (n=1070) stratified by the proposed MRS (n=1070), ISS (n=1070) and RISS 
(n=627), respectively. G, H- Cox Hazard Analysis of PFS and OS. Univariate analysis of parameters- Age, Albumin, β2M, Calcium, eGFR, Hb and different staging 
methods-MRS, ISS and RISS. Multivariate analysis of different groups of MRS, ISS and RISS. 
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Fig. 4. A, B, C- Progression-Free Survival in patients with MM from MMRF cohort (n=900) stratified by the proposed MRS (n=900), ISS (n=900) and RISS (n=703), 
respectively. D, E, F- Overall Survival in patients with MM from MMRF cohort (n=900) stratified by the proposed MRS (n=900), ISS (n=900) and RISS (n=703), 
respectively. G, H- Cox Hazard analysis of PFS and OS. Univariate analysis of parameters- Age, Albumin, β2M, Calcium, eGFR, Hb and different staging methods- 
MRS, ISS and RISS. Multivariate analysis of different groups of MRS, ISS and RISS. 
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eGFR level was greater than 50.7 but age was greater than 67, the pa
tient was still placed in MRS-3. Hence, it was evident that poor outcome 
was associated with a combination of abnormally high or low levels of 
multiple prognostic factors. Thus, MRS staging does not rely on a single 
parameter but takes into consideration multiple parameters that are 
associated with hemodynamic systems as a whole. 

In the MMRF dataset, 703 patients out of 900 had RISS labels. 91 out 
of these 703 patients (12.9%) were labeled as RISS-3. In these 91 pa
tients, 43 were labeled as MRS-3, 43 as MRS-2 and 5 were labeled as 
MRS-1. The median OS for these 5 patients was 70 weeks and no death 
event was observed in any of these patients. In fact, there was no disease 
progression in these 5 patients in the first year of diagnosis. Hence, the 
staging provided by MRS is more accurate as it positioned these patients 
in the low-risk stage (MRS-1) contrary to the high-risk stage (RISS-3) 
provided by the RISS scheme. Similarly, 239 patients out of 900 
(26.56%) patients were stratified as ISS-3. Out of these 239 patients, 125 
were labeled MRS-3, 105 were labeled MRS-2 and 9 were labeled MRS- 
1. Median OS of these 9 patients was 70 weeks and no death event was 
observed in these patients. Further, there was no disease progression in 
the first year of diagnosis. MRS correctly placed the patients in a low-risk 
group as compared to ISS. Thus, it can be deduced that MRS helps in 
better filtering of the patients compared to RISS and ISS. Further, there 
were overall 147 patients (16.33%) that were stratified as MRS-3 in 
MMRF dataset. None of the 147 patients was present in the low-risk 
stages of ISS and RISS, thereby establishing the efficacy of MRS stag
ing in identification of high risk patients. 

Hierarchical rules in J48 tree and mismatched labels between BIRCH and 
J48 classifier 

Hemoglobin and β2M were observed to be the most important poor 
prognostic factors in MRS staging followed by others. Hemoglobin had 
the greatest weight assigned based on hazard ratios obtained from the 
univariate Cox hazard analysis. It was present at the first level (highest 
node) for classification in the J48 tree, thus confirming the high prog
nostic value of β2M on PFS and OS. It was observed that no leaf node of 
the decision ended in MRS-3 stage for hemoglobin values greater than 

the threshold 12.2, while five leaf nodes ended in MRS-3 stage for β2M 
values lower than 12.2, thereby, indicating that the patients with higher 
disease load have lower hemoglobin. J48 tree utilized the values of 
hemoglobin at continuous scale and provided a single cut-off for he
moglobin as 12.2 in the decision rules (Fig. 2A) which is quite close to 
the proposed threshold value of 12.3 obtained via KAP and hence, 
justified the choice of our new threshold for hemoglobin. Lower levels of 
hemoglobin were predictors of poor outcome and were associated with 
high-risk patients, as evident from the hierarchical rules obtained from 
J48 classifier. Similarly, β2M levels of 4.775 or lower were associated 
with either low or intermediate risk as observed in the J48 classifier 
rules. J48 tree provided two cut-offs for β2M, 4.775 and 4.85 in the 
decision rules. These cut-offs were quite close to the proposed threshold 
for β2M, 4.8 and justified the choice of our new threshold for β2M. Apart 
from hemoglobin and β2M, the hierarchical rules in the J48 tree for 
other parameters also exhibited values comparable to the proposed 
thresholds. 

The J48 assigned risk group label of four patients (0.5%) of the 
training set were found to have a mismatch with that assigned by the 
unsupervised BIRCH clustering. Training data was visualized using 
UMAP scatter plot. UMAP (Uniform Manifold Approximation and Pro
jection) is a technique of dimensionality reduction mostly used for 
visualization of high dimensional data. It is evident from the plot that 
SM0500 (green), SM0773 (violet), SM0871 (magenta), and SM1257 
(yellow) were assigned labels different from the labels obtained from 
BIRCH clustering. Further, there is a possibility of overfitting due to a 
smaller number of training samples (n=716), which was addressed by 
performing pruning on the J48 tree. Results in terms of p-values and 
hazard ratios in the test set of MMIn dataset and in the overall cohort of 
MMRF data is further suggestive of the reduced possibility of overfitting. 

Sensitivity analysis of the J48 decision tree classifier 

We first trained the J48 decision tree classifier using all the variables 
and observed the 10-fold cross validation accuracy. As already dis
cussed, the ground truth risk stages were obtained via BIRCH clustering. 
We then trained the J48 classifier under the same settings six times, each 

Table 2 
Prediction of Progression-free survival and overall survival (in%) for MRS, ISS and RISS at 1, 2, 3, 4 and 5 years in MMIn (n=1070) and MMRF datasets (n=900).  

MMIn dataset  

Year 
MRS (n = 1070) ISS (n = 1070) RISS (n = 627) 

1 2 3 1 2 3 1 2 3 

PFS 1 89.78 85.73 77.11 89.64 88.48 80.24 91.11 86.76 68.24 
2 77.00 71.45 58.46 80.33 73.89 62.68 84.15 72.39 53.41 
3 69.13 54.94 43.02 68.50 62.48 46.22 62.62 58.07 36.87 
4 55.66 40.28 33.60 53.22 49.98 33.48 33.46 45.28 27.44 
5 43.04 33.30 27.48 40.25 41.67 27.22 26.77 36.66 18.29 

OS 1 96.75 93.19 86.74 93.64 95.88 89.94 97.78 95.56 82.27 
2 94.39 84.18 71.89 90.10 88.82 78.01 93.28 87.91 70.40 
3 91.72 76.52 63.62 87.84 82.63 69.45 90.76 81.80 59.32 
4 90.58 68.34 55.29 85.82 76.00 61.30 86.98 73.61 49.03 
5 85.82 61.73 48.78 80.94 71.91 52.79 86.98 68.65 40.39  

MMRF dataset  

Year MRS (n = 900) ISS (n = 900) RISS (n = 703) 

1 2 3 1 2 3 1 2 3 

PFS 1 88.95 77.64 69.84 89.95 79.44 69.08 90.32 80.49 62.03 
2 77.56 59.90 42.20 77.11 61.86 46.24 79.57 61.73 38.13 
3 62.82 42.17 35.10 59.75 48.21 33.6 62.95 47.73 28.99 
4 51.49 28.09 23.16 47.7 32.95 22.35 46.41 33.74 26.36 
5 35.61 24.66 13.89 34.81 29.27 14.37 27.69 24.96 26.36 

OS 1 96.93 90.90 82.81 96.76 91.61 85.29 98.07 91.17 83.21 
2 93.73 82.69 66.44 93.91 85.24 68.65 96.11 83.81 61.09 
3 88.43 76.18 59.20 90.73 77.16 60.79 92.86 77.28 49.78 
4 86.56 72.64 51.88 88.21 73.39 55.8 88.33 73.52 47.02 
5 79.06 66.66 41.91 74.73 71.92 48.93 57.48 70.49 35.27  
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time excluding one of the variables and observed their classification 
accuracy. Highest classification accuracy was 96.5% when all the pa
rameters were used for training. Classification accuracy was least 
affected by absence of calcium. However, classification accuracy 
decreased drastically (Supplementary Table S7) in absence of one of the 
variables- albumin, β2M, Hb, eGFR and age (ordered in rank from the 
highest impact to the lowest impact). 

Conclusion 

Overall, this work presents a new reliable and inexpensive staging 
system, namely, MRS that utilizes easily acquirable laboratory param
eters. It is valuable for the settings where genomic tests cannot be per
formed owing to economical and/or geographical constraints. The 
thresholds, proposed by this study, of laboratory parameters via KAP 
produce distinct PFS and OS patterns that are quantified by minimum p- 
value with better separation of MRS groups compared with those ob
tained with established thresholds and hence, can be adopted. 10-fold 
cross validation classification accuracy and ROC area confirm that our 
hierarchical stratification model can correctly classify patients into 
different risk groups. Application of machine learning techniques in 
MRS has led to better prediction of the survival outcome and identified 
different risk groups with distinct characteristics. The study recom
mends training of machine learning models on larger datasets because 
that can provide efficient upfront prognostication that may be useful in 
selection of therapy of appropriate intensity especially in high-risk MM 
patients. Further, the performance on MMRF dataset indicates that there 
may be nuances with respect to ethnicity and race. MRS model is trained 
on MMIn dataset using the new cut-offs proposed via KAP and is only 
tested on the MMRF dataset. Both the dataset belong to populations of 
different ethnicity and race. Therefore, the impact of ethnicity and race 
on risk staging ML models can be explored in future. 

Data availability/calculator availability 

An online version of the MRS calculator (https://github.com/A 
kankshaFarswan/MRS_Calculator) (Supplementary Fig S2) is also 
available which provides the risk stage of the patient based on the values 
of the six parameters-age, albumin, β2M, calcium, eGFR and 
hemoglobin. 
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